Mechanisms of doping graphene

被引:54
作者
Pinto, H. [1 ]
Jones, R. [1 ]
Goss, J. P. [2 ]
Briddon, P. R. [2 ]
机构
[1] Univ Exeter, Sch Engn Math & Phys Sci, Exeter EX4 4QL, Devon, England
[2] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2010年 / 207卷 / 09期
关键词
doping; electrochemical; graphene; SURFACE CONDUCTIVITY; OXIDATION; DIAMOND;
D O I
10.1002/pssa.201000009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We distinguish three mechanisms of doping graphene. Density functional theory is used to show that electronegative molecules like tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and electropositive metals like K dope graphene p- and n-type, respectively. These dopants are expected to lead to a decrease in carrier mobility arising from Coulomb scattering but without any hysteresis effects. Secondly, a novel doping mechanism is exhibited by Au which dopes bilayer graphene but not single layer. Thirdly, electrochemical doping is effected by redox reactions and can result in p-doping by humid atmospheres and n-doping by NH3 and toluene. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2131 / 2136
页数:6
相关论文
共 31 条
[1]   Quasi-ice monolayer on atomically smooth amorphous SiO2 at room temperature observed with a high-finesse optical resonator -: art. no. 166104 [J].
Aarts, IMP ;
Pipino, ACR ;
Hoefnagels, JPM ;
Kessels, WMM ;
van de Sanden, MCM .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[2]   H2O and O2 molecules in amorphous SiO2:: Defect formation and annihilation mechanisms -: art. no. 195206 [J].
Bakos, T ;
Rashkeev, SN ;
Pantelides, ST .
PHYSICAL REVIEW B, 2004, 69 (19) :195206-1
[3]   Charge transfer from ammonia physisorbed on nanotubes -: art. no. 218301 [J].
Bradley, K ;
Gabriel, JCP ;
Briman, M ;
Star, A ;
Grüner, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (21) :1-218301
[4]   Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J].
Chakrapani, Vidhya ;
Angus, John C. ;
Anderson, Alfred B. ;
Wolter, Scott D. ;
Stoner, Brian R. ;
Sumanasekera, Gamini U. .
SCIENCE, 2007, 318 (5855) :1424-1430
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping [J].
Coletti, C. ;
Riedl, C. ;
Lee, D. S. ;
Krauss, B. ;
Patthey, L. ;
von Klitzing, K. ;
Smet, J. H. ;
Starke, U. .
PHYSICAL REVIEW B, 2010, 81 (23)
[7]   Doping of graphene: Density functional calculations of charge transfer between GaAs and carbon nanostructures [J].
Eberlein, T. A. G. ;
Jones, R. ;
Goss, J. P. ;
Briddon, P. R. .
PHYSICAL REVIEW B, 2008, 78 (04)
[8]   Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane [J].
Gao, WY ;
Kahn, A .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (01) :359-366
[9]   The surface conductivity at the Diamond/Aqueous electrolyte interface [J].
Garrido, Jose A. ;
Hartl, Andreas ;
Dankerl, Markus ;
Reitinger, Andreas ;
Eickhoff, Martin ;
Helwig, Andreas ;
Mueller, Gerhard ;
Stutzmann, Martin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (12) :4177-4181
[10]  
Goss JP, 2007, TOP APPL PHYS, V104, P69