Tunable Raman laser in a hollow bottle-like microresonator

被引:43
作者
Chen, Yuan [1 ,2 ]
Zhou, Zhong-Hao [1 ,2 ]
Zou, Chang-Ling [1 ,2 ]
Shen, Zhen [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Dong, Chun-Hua [1 ,2 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2017年 / 25卷 / 14期
基金
中国国家自然科学基金;
关键词
WHISPERING-GALLERY MODES; RINGING PHENOMENON; ON-CHIP; SCATTERING; GAIN; EVOLUTION;
D O I
10.1364/OE.25.016879
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A tunable Raman laser in the hollow bottle-like microresonator is demonstrated. By controlling the pump laser frequency, we have demonstrated continuous Raman laser frequency tuning. We also have studied the interesting transient mode evolution with Raman gain by sweeping the pump and probe laser, and verified the thermal tuning mechanism by theoretical simulations. By mechanically stretching the resonator, we have achieved the large range frequency tuning of the Raman laser, with the tuning range of 132 GHz with the resolution about 85 MHz. The demonstrated tunable Raman laser can be used as a source for future optical applications. (C) 2017 Optical Society of America
引用
收藏
页码:16879 / 16887
页数:9
相关论文
共 51 条
  • [1] Observation of strong coupling between one atom and a monolithic microresonator[J]. Aoki, Takao;Dayan, Barak;Wilcut, E.;Bowen, W. P.;Parkins, A. S.;Kippenberg, T. J.;Vahala, K. J.;Kimble, H. J. NATURE, 2006(7112)
  • [2] Visible light emission from a silica microbottle resonator by second- and third-harmonic generation[J]. Asano, M.;Komori, S.;Ikuta, R.;Imoto, N.;Ozdemir, S. . K.;Yamamoto, T. OPTICS LETTERS, 2016(24)
  • [3] Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator[J]. Asano, Motoki;Takeuchi, Yuki;Ozdemir, Sahin Kaya;Ikuta, Rikizo;Yang, Lan;Imoto, Nobuyuki;Yamamoto, Takashi. OPTICS EXPRESS, 2016(11)
  • [4] Cavity optomechanics[J]. Aspelmeyer, Markus;Kippenberg, Tobias J.;Marquardt, Florian. REVIEWS OF MODERN PHYSICS, 2014(04)
  • [5] Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator[J]. Cao, Qi-Tao;Wang, Heming;Dong, Chun-Hua;Jing, Hui;Liu, Rui-Shan;Chen, Xi;Ge, Li;Gong, Qihuang;Xiao, Yun-Feng. PHYSICAL REVIEW LETTERS, 2017(03)
  • [6] Dynamical thermal behavior and thermal self-stability of microcavities[J]. Carmon, T;Yang, L;Vahala, KJ. OPTICS EXPRESS, 2004(20)
  • [7] Titanium-enhanced Raman microcavity laser[J]. Deka, Nishita;Maker, Ashley J.;Armani, Andrea M. OPTICS LETTERS, 2014(06)
  • [8] Optical frequency comb generation from a monolithic microresonator[J]. Del'Haye, P.;Schliesser, A.;Arcizet, O.;Wilken, T.;Holzwarth, R.;Kippenberg, T. J. NATURE, 2007(7173)
  • [9] Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing[J]. Dong, C. -H.;He, L.;Xiao, Y. -F.;Gaddam, V. R.;Ozdemir, S. K.;Han, Z. -F.;Guo, G. -C.;Yang, L. APPLIED PHYSICS LETTERS, 2009(23)
  • [10] Optomechanical Dark Mode[J]. Dong, Chunhua;Fiore, Victor;Kuzyk, Mark C.;Wang, Hailin. SCIENCE, 2012(6114)