Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers

被引:29
作者
Egger, Robert [1 ,3 ]
Narayanan, Rajeevan T. [1 ]
Guest, Jason M. [1 ]
Bast, Arco [1 ]
Udvary, Daniel [1 ]
Messore, Luis F. [1 ]
Das, Suman [2 ]
de Kock, Christiaan P. J. [2 ]
Oberlaender, Marcel [1 ]
机构
[1] Ctr Adv European Studies & Res Caesar, Max Planck Res Grp Silico Brain Sci, Ludwig Erhard Allee 2, D-53175 Bonn, Germany
[2] Vrije Univ Amsterdam, Dept Integrat Neurophysiol, Ctr Neurogenom & Cognit Res, De Boelelaan 1085, NL-1081 Amsterdam, Netherlands
[3] NYU Sch Med, Long Lab, Neurosci Inst, 435 East 30th St, New York, NY 10016 USA
基金
欧洲研究理事会;
关键词
SURROUND RECEPTIVE-FIELDS; RAT BARREL CORTEX; PYRAMIDAL NEURONS; GABAERGIC INTERNEURONS; SYNAPTIC CONNECTIVITY; SOMATOSENSORY CORTEX; INHIBITORY NEURONS; PRINCIPAL CELLS; MEYNERT CELLS; ADULT-RAT;
D O I
10.1016/j.neuron.2019.10.011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Pyramidal tract neurons (PTs) represent the major output cell type of the mammalian neocortex. Here, we report the origins of the PTs' ability to respond to a broad range of stimuli with onset latencies that rival or even precede those of their intracortical input neurons. We find that neurons with extensive horizontally projecting axons cluster around the deeplayer terminal fields of primary thalamocortical axons. The strategic location of these corticocortical neurons results in high convergence of thalamocortical inputs, which drive reliable sensory-evoked responses that precede those in other excitatory cell types. The resultant fast and horizontal stream of excitation provides PTs throughout the cortical area with input that acts to amplify additional inputs from thalamocortical and other intracortical populations. The fast onsets and broadly tuned characteristics of PT responses hence reflect a gating mechanism in the deep layers, which assures that sensory-evoked input can be reliably transformed into cortical output.
引用
收藏
页码:122 / +
页数:24
相关论文
共 87 条
[1]   RAPID REMODELING OF AXONAL ARBORS IN THE VISUAL-CORTEX [J].
ANTONINI, A ;
STRYKER, MP .
SCIENCE, 1993, 260 (5115) :1819-1821
[2]   SPATIOTEMPORAL CONVERGENCE AND DIVERGENCE IN THE RAT S1 BARREL CORTEX [J].
ARMSTRONGJAMES, M ;
FOX, K .
JOURNAL OF COMPARATIVE NEUROLOGY, 1987, 263 (02) :265-281
[3]   Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex [J].
Arzt, Marlene ;
Sakmann, Bert ;
Meyer, Hanno S. .
CEREBRAL CORTEX, 2018, 28 (08) :2763-2774
[4]   POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex [J].
Audette, Nicholas J. ;
Urban-Ciecko, Joanna ;
Matsushita, Megumi ;
Barth, Alison L. .
CEREBRAL CORTEX, 2018, 28 (04) :1312-1328
[5]   Characterization of neocortical principal cells and Interneurons by network interactions and extracellular features [J].
Barthó, P ;
Hirase, H ;
Monconduit, L ;
Zugaro, M ;
Harris, KD ;
Buzsáki, G .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (01) :600-608
[6]   Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats [J].
Boudewijns, Zimbo S. R. M. ;
Groen, Martine R. ;
Lodder, Brendan ;
McMaster, Minni T. B. ;
Kalogreades, Lawrence ;
de Haan, Roel ;
Narayanan, Rajeevan T. ;
Meredith, Rhiannon M. ;
Mansvelderand, Huibert D. ;
de Kock, Christiaan P. J. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2013, 7
[7]   Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction [J].
Brecht, M ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 538 (02) :495-515
[8]   Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex [J].
Brecht, M ;
Roth, A ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 553 (01) :243-265
[9]   Organizing principles of cortical layer 6 [J].
Briggs, Farran .
FRONTIERS IN NEURAL CIRCUITS, 2010, 4
[10]   Visual Experience Regulates the Intrinsic Excitability of Visual Cortical Neurons to Maintain Sensory Function [J].
Brown, Alexander P. Y. ;
Cossell, Lee ;
Margrie, Troy W. .
CELL REPORTS, 2019, 27 (03) :685-+