Development of analytical and numerical solutions for direct ethanol fuel cells

被引:5
作者
Gomes, Ranon S. [1 ]
De Souza, Marcelo M. [1 ]
De Bortoli, Alvaro L. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Av Bento Goncalves 9500,POB 15080, BR-91509900 Porto Alegre, RS, Brazil
关键词
Fuel cells; Ethanol; Analytical solution; Mathematical model; Numerical results; 3-DIMENSIONAL MATHEMATICAL-MODEL; METHANOL; SIMULATION; ANODE; PERFORMANCE; TRANSPORT; MEMBRANE; CATALYST;
D O I
10.1007/s00231-019-02666-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents an analytical solution to calculate the mole fraction of the major species involved in the oxidation of ethanol on the anode side, and the reduction of oxygen on the cathode side of a direct ethanol full cell. The equations of the species are solved using two mathematical tools: Separation of variables and Laplace transform. The solutions obtained with the two methods are equivalent and describe the mole fraction of chemical species. The results obtained with the analytical solution were compared with the data obtained with the two-dimensional model, solved numerically with the finite difference method in space and Runge-Kutta method in time. The results of mole fraction of the species obtained through the analytical solution are used to calculate, at a lower cost, the overpotential losses and the direct ethanol fuel cell voltage. The results obtained are in accordance with the experimental data found in the literature for the catalysts Pt-Re-Sn/t-MWCNTs and Pt-Re-Sn/MCN.
引用
收藏
页码:3301 / 3316
页数:16
相关论文
共 39 条
[1]   Development of a conceptual design model of a direct ethanol fuel cell (DEFC) [J].
Abdullah, S. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Masdar, M. S. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) :11943-11948
[2]   Modeling and simulation of a direct ethanol fuel cell: An overview [J].
Abdullah, S. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Masdar, M. S. ;
Daud, W. R. W. .
JOURNAL OF POWER SOURCES, 2014, 262 :401-406
[3]   Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations [J].
Al-Baghdadi, MARS .
RENEWABLE ENERGY, 2005, 30 (10) :1587-1599
[4]   The effect of the parasitic current on the direct ethanol PEM fuel cell operation [J].
Andreadis, G. M. ;
Podias, A. K. M. ;
Tsiakaras, P. E. .
JOURNAL OF POWER SOURCES, 2008, 181 (02) :214-227
[5]   Direct ethanol fuel cell anode simulation model [J].
Andreadis, George ;
Song, Shuqin ;
Tsiakaras, Panagiotis .
JOURNAL OF POWER SOURCES, 2006, 157 (02) :657-665
[6]   Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation [J].
Andreadis, George ;
Tsiakaras, Panagiotis .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (22) :7497-7508
[7]  
[Anonymous], 1965, SCHAUMS OUTLINE THEO
[8]   Direct ethanol fuel cells for transport and stationary applications - A comprehensive review [J].
Badwal, S. P. S. ;
Giddey, S. ;
Kulkarni, A. ;
Goel, J. ;
Basu, S. .
APPLIED ENERGY, 2015, 145 :80-103
[9]   Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane [J].
Bahrami, Hafez ;
Faghri, Amir .
JOURNAL OF POWER SOURCES, 2012, 218 :286-296
[10]   Methanol fuel cell model: Anode [J].
Baxter, SF ;
Battaglia, VS ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) :437-447