Localization in equivariant intersection theory and the Bott residue formula

被引:74
作者
Edidin, D [1 ]
Graham, W
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
D O I
10.1353/ajm.1998.0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the localization theorem for torus actions in equivariant intersection theory. Using the theorem we give another proof of the Bott residue formula for Chern numbers of bundles on smooth complete varieties. In addition, our techniques allow us to obtain residue formulas for bundles on a certain class of singular schemes which admit torus actions. This class is rather special, but it includes some interesting examples such as complete intersections and Schubert varieties.
引用
收藏
页码:619 / 636
页数:18
相关论文
共 29 条
[1]   SCHUBERT CYCLES AND EQUIVARIANT K/T COHOMOLOGY [J].
ARABIA, A .
INVENTIONES MATHEMATICAE, 1986, 85 (01) :39-52
[2]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[3]   LEFSCHETZ-RIEMANN-ROCH FOR SINGULAR-VARIETIES [J].
BAUM, P ;
FULTON, W ;
QUART, G .
ACTA MATHEMATICA, 1979, 143 (3-4) :193-211
[4]  
BERLINE N, 1982, CR ACAD SCI I-MATH, V295, P539
[5]   ALGEBRAIC CYCLES AND HIGHER K-THEORY [J].
BLOCH, S .
ADVANCES IN MATHEMATICS, 1986, 61 (03) :267-304
[6]  
Bloch S., 1994, J. Algebraic Geom, V3, P537
[7]  
BOREL A, 1961, ANN MATH STUD, V46
[8]  
BRION M, 1997, J TRANSFORMATION GRO, V2, P225
[9]  
Edidin D, 1997, J ALGEBRAIC GEOM, V6, P431
[10]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214