A spectral characterization of nonlinear normal modes

被引:32
|
作者
Cirillo, G. I. [4 ]
Mauroy, A. [1 ]
Renson, L. [2 ]
Kerschen, G. [3 ]
Sepulchre, R. [4 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Syst & Modeling Res Grp, Liege, Belgium
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[3] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab S3L, Liege, Belgium
[4] Univ Cambridge, Dept Engn, Control Grp, Cambridge CB2 1PZ, England
关键词
Nonlinear normal modes; Koopman operator; Spectral; Characterization; Invariant manifolds; Parametrization; NUMERICAL COMPUTATION; SYSTEMS;
D O I
10.1016/j.jsv.2016.05.016
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two degree-of-freedom system with cubic nonlinearity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [21] Identification of nonlinear boundary effects using nonlinear normal modes
    Ahmadian, Hamid
    Zamani, Arash
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (06) : 2008 - 2018
  • [22] Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
    Mikhlin, Yu V.
    Perepelkin, N. V.
    Klimenko, A. A.
    Harutyunyan, E.
    MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS 2012 (MPSVA 2012), 2012, 382
  • [24] Nonlinear Substructuring Using Fixed Interface Nonlinear Normal Modes
    Falco, Marco
    Mahdiabadi, Morteza Karamooz
    Rixen, Daniel Jean
    DYNAMICS OF COUPLED STRUCTURES, VOL 4, 2017, : 205 - 213
  • [25] Nonlinear normal modes and dynamic balancing for a nonlinear rotor system
    Wang, Tianzhu
    Ding, Qian
    NONLINEAR DYNAMICS, 2024, 112 (13) : 10823 - 10844
  • [26] Nonlinear normal modes and their application in structural dynamics
    Pierre, Christophe
    Jiang, Dongying
    Shaw, Steven
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006
  • [27] A numerical method for determining nonlinear normal modes
    Slater, JC
    NONLINEAR DYNAMICS, 1996, 10 (01) : 19 - 30
  • [28] The Significance of Nonlinear Normal Modes for Forced Responses
    Hill, T. L.
    Neild, S. A.
    Cammarano, A.
    Barton, D. A. W.
    NONLINEAR DYNAMICS, VOL 1, 2017, : 135 - 142
  • [29] Nonlinear Normal Modes in a System with Nonholonomic Constraints
    R. H. Rand
    D. V. Ramani
    Nonlinear Dynamics, 2001, 25 : 49 - 64
  • [30] Nonlinear normal modes in a system with nonholonomic constraints
    Rand, RH
    Ramani, DV
    NONLINEAR DYNAMICS, 2001, 25 (1-3) : 49 - 64