A spectral characterization of nonlinear normal modes

被引:32
|
作者
Cirillo, G. I. [4 ]
Mauroy, A. [1 ]
Renson, L. [2 ]
Kerschen, G. [3 ]
Sepulchre, R. [4 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Syst & Modeling Res Grp, Liege, Belgium
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[3] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab S3L, Liege, Belgium
[4] Univ Cambridge, Dept Engn, Control Grp, Cambridge CB2 1PZ, England
关键词
Nonlinear normal modes; Koopman operator; Spectral; Characterization; Invariant manifolds; Parametrization; NUMERICAL COMPUTATION; SYSTEMS;
D O I
10.1016/j.jsv.2016.05.016
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two degree-of-freedom system with cubic nonlinearity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [1] Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction
    Haller, George
    Ponsioen, Sten
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1493 - 1534
  • [2] Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction
    George Haller
    Sten Ponsioen
    Nonlinear Dynamics, 2016, 86 : 1493 - 1534
  • [3] ON THE RESONANT NONLINEAR NORMAL MODES
    Zhang Xinhua
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1645 - 1648
  • [4] USAGE OF NONLINEAR NORMAL MODES IN DYNAMICS
    Byrtus, M.
    ENGINEERING MECHANICS 2011, 2011, : 71 - 74
  • [5] Stability of strongly nonlinear normal modes
    Recktenwald, Geoffrey
    Rand, Richard
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) : 1128 - 1132
  • [6] Identifying the significance of nonlinear normal modes
    Hill, T. L.
    Cammarano, A.
    Neild, S. A.
    Barton, D. A. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2199):
  • [7] Nonlinear normal modes of a cantilever beam
    Nayfeh, AH
    Chin, C
    Nayfeh, SA
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 477 - 481
  • [8] Nonlinear normal modes for damage detection
    Lacarbonara, Walter
    Carboni, Biagio
    Quaranta, Giuseppe
    MECCANICA, 2016, 51 (11) : 2629 - 2645
  • [9] Nonlinear normal modes in pendulum systems
    Klimenko, A. A.
    Mikhlin, Y. V.
    Awrejcewicz, J.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 797 - 813
  • [10] Nonlinear normal modes in pendulum systems
    A. A. Klimenko
    Y. V. Mikhlin
    J. Awrejcewicz
    Nonlinear Dynamics, 2012, 70 : 797 - 813