A new circular dichroism (CD) spectroscopy technique for studying conformational changes in proteins in situ at the air-water interface is described. By using this. technique, conformations of four proteins, viz., beta-casein, bovine serum albumin (BSA), lysozyme, and fibrinogen in the adsorbed state at the air-water interface have been studied. beta-Casein, which is predominantly in a disordered state in solution, assumes a beta-sheet conformation at the air-water interface. On the other hand, lysozyme and fibrinogen, which are alpha+beta-type proteins in solution, become beta-type proteins by completely. transforining their alpha-helix structure into beta-sheets. Bovine serum albumin, which is an alpha-type protein in solution, loses its alpha-helix and becomes a disordered protein at the air-water interface. The results indicated that during unfolding and film formation at the interface, structural changes in proteins, regardless of their initial native state, follow the course of increasing beta-sheet and disordered structure and decreasing alpha-helix content. Although this seeing to be the general trend, the exceptional case of BSA suggests, however, that this is not universal.