Hidden structure of symmetries

被引:1
作者
Bogoyavlenskij, OI [1 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
关键词
D O I
10.1007/s00220-004-1253-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hidden additional algebraic structure is discovered for the Lie algebra of symmetries of any dynamical system V. The structure is based on the properties of the Lie derivative operator L V and on a hidden canonical flag structure in the eigenspaces of any linear operator.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 9 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]   Theory of tensor invariants of integrable Hamiltonian systems .2. Theorem on symmetries and its applications [J].
Bogoyavlenskij, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :301-365
[3]   Conformal symmetries of dynamical systems and Poincare 1892 concept of iso-energetic non-degeneracy [J].
Bogoyavlenskij, OI .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :213-218
[4]  
FINKBEINER DT, 1978, INTRO MATRICES LINEA
[5]   MASTERSYMMETRIES, HIGHER-ORDER TIME-DEPENDENT SYMMETRIES AND CONSERVED-DENSITIES OF NONLINEAR EVOLUTION-EQUATIONS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (06) :1508-1522
[6]  
Gantmacher FR., 1960, THEORY MATRICES
[7]  
Kolmogorov A. N., 1954, P INT C MATH AMSTERD, V1, P315
[8]  
Marsden J. E., 1999, Introduction to Mechanics and Symmetry-A Basic Exposition of Classical Mechanical Systems, V2nd ed., DOI 10.1007/978-0-387-21792-5
[9]  
POINCARE H, 1892, METODES NOUVLLES MEC, V1