A comprehensive review of remote sensing platforms, sensors, and applications in nut crops

被引:74
作者
Jafarbiglu, Hamid [1 ]
Pourreza, Alireza [1 ]
机构
[1] Univ Calif Davis, Dept Biol & Agr Engn, 3042 Bainer Hall, Davis, CA 95616 USA
关键词
Remote sensing; Nut crops; Precision agriculture; Unmanned aerial systems (UAS); WATER-STRESS INDEX; PRECISION AGRICULTURE; CANOPY TEMPERATURE; SOIL-SALINITY; SENSITIVE INDICATOR; VERTICILLIUM WILT; UNMANNED AIRCRAFT; FEATURE-SELECTION; YIELD PREDICTION; PLANT NUTRITION;
D O I
10.1016/j.compag.2022.106844
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Background: Due to their high protein content, nuts (almond, walnut, and pistachio) are among the main substitutes for meat, with a growing share of the food basket in the United States. However, the rapidly growing acreage of these crops, new legislations, the necessity of minimizing the environmental footprint, and a costeffective production demand certain managerial practices based on precision agriculture and remote sensing, which have shown promising results in food production. Scope and approach: This paper presents a comprehensive review of remote sensing platforms, sensors, applications, and analytic pipelines with a focus on nut crops, even though the materials are applicable for other specialty crops. In this regard, the paper is divided into five main sections: First, the problems and potential solutions are elaborated in the introduction. Second, the available platforms: satellites, manned aircraft, and UASs are discussed. Then the sensors used for remote sensing, their working principle, and the pros and cons of each are presented. Next, practiced and suggested applications of remote sensing data are reviewed. Finally, data processing and analytics needed to produce and interpret reliable results are highlighted.Key findings and conclusions: Key findings are listed as: 1) The acreage of the nut orchards and the purpose of the studies determine the fitting sensor and platform. 2) Although various sensors are available and reported to have promising results in other crops, they have not been used for nut crops. 3) Accurate sensor calibration is crucial for repeatable results as well as temporal and inter-field comparisons. 4) Except for water management, most remote sensing applications are limitedly studied in nut orchards, creating some research opportunities. 5) Finally, increasing data size requires new machine learning techniques and data fusion frameworks to handle all variables and fill the knowledge gap.
引用
收藏
页数:23
相关论文
共 209 条
[61]   Approach to assess infrared thermal imaging of almond trees under water-stress conditions [J].
Garcia-Tejero, Ivan ;
Hugo Duran-Zuazo, Victor ;
Arriaga, Javier ;
Hernandez, Almudena ;
Maria Velez, Luisa ;
Luis Muriel-Fernandez, Jose .
FRUITS, 2012, 67 (06) :463-474
[62]   Soil Nutrient Status and Leaf Nutrient Diagnosis in the Main Apple Producing Regions in China [J].
Ge Shunfeng ;
Zhu Zhanling ;
Peng Ling ;
Chen Qian ;
Jiang Yuanmao .
HORTICULTURAL PLANT JOURNAL, 2018, 4 (03) :89-93
[63]   Vignette and Exposure Calibration and Compensation [J].
Goldman, Dan B. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (12) :2276-2288
[64]   Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential [J].
Gomes-Laranjo, J. ;
Coutinho, J. P. ;
Galhano, V. ;
Cordeiro, V. .
AGRICULTURAL WATER MANAGEMENT, 2006, 83 (03) :261-265
[65]   Canopy temperature variability as an indicator of crop water stress severity [J].
González-Dugo, MP ;
Moran, MS ;
Mateos, L ;
Bryant, R .
IRRIGATION SCIENCE, 2006, 24 (04) :233-240
[66]   Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system [J].
Gonzalez-Dugo, V. ;
Goldhamer, D. ;
Zarco-Tejada, P. J. ;
Fereres, E. .
IRRIGATION SCIENCE, 2015, 33 (01) :43-52
[67]   Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard [J].
Gonzalez-Dugo, V. ;
Zarco-Tejada, P. ;
Nicolas, E. ;
Nortes, P. A. ;
Alarcon, J. J. ;
Intrigliolo, D. S. ;
Fereres, E. .
PRECISION AGRICULTURE, 2013, 14 (06) :660-678
[68]   Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent [J].
Gonzalez-Dugo, V. ;
Zarco-Tejada, P. ;
Berni, J. A. J. ;
Suarez, L. ;
Goldhamer, D. ;
Fereres, E. .
AGRICULTURAL AND FOREST METEOROLOGY, 2012, 154 :156-165
[69]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[70]   A REVIEW OF POINT CLOUDS SEGMENTATION AND CLASSIFICATION ALGORITHMS [J].
Grilli, E. ;
Menna, F. ;
Remondino, F. .
3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2017, 42-2 (W3) :339-344