Silicon heterojunction solar cells toward higher fill factor

被引:23
作者
Martini, Luca [1 ]
Serenelli, Luca [1 ]
Menchini, Francesca [1 ]
Izzi, Massimo [1 ]
Tucci, Mario [1 ]
机构
[1] ENEA Res Ctr Casaccia, Via Anguillarese 301, I-00123 Rome, Italy
来源
PROGRESS IN PHOTOVOLTAICS | 2020年 / 28卷 / 04期
关键词
base contact; energy barrier; fill factor; heterojunctions; simulations; TCO; TEMPERATURE-DEPENDENCE; WORK FUNCTION; CONTACT; EFFICIENCY;
D O I
10.1002/pip.3241
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the most limiting factors in the record conversion efficiency of amorphous/crystalline silicon heterojunction solar cells is the not impressive fill factor value. In this work, with the aid of a numerical model, the ways to enhance the cell fill factor up to 85% are investigated in detail, considering the properties of conventional amorphous-doped films, wider Energy gap layers, and transparent conductive oxide films. The band alignment among the various materials composing the heterojunction is the key to high efficiency but becomes an issue for the solar cell fill factor, if not well addressed. One of the most interesting outcomes of this work is the evidence of hidden barriers arising between the transparent conductive oxide and both selective contacts, due to the mismatch between their work functions. The measurement of light current-voltage characteristics performed at low temperature is proposed as a way to identify the presence of these barriers in efficient solar cells that do not possess high fill factor values. Experimental J-V characteristics compared with numerical simulations demonstrated that the sometimes neglected cell base contact needs instead a more careful consideration. To this aim, a model to predict the presence of a hidden barrier at the base contact that limits the cell fill factor is proposed.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 28 条
[1]   Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency [J].
Adachi, Daisuke ;
Hernandez, Jose Luis ;
Yamamoto, Kenji .
APPLIED PHYSICS LETTERS, 2015, 107 (23)
[2]   EXPERIMENTS ON GE-GAAS HETEROJUNCTIONS [J].
ANDERSON, RL .
SOLID-STATE ELECTRONICS, 1962, 5 (SEP-O) :341-&
[3]   Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics [J].
Brendel, Rolf ;
Peibst, Robby .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (06) :1413-1420
[4]   Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance [J].
Centurioni, E ;
Iencinella, D .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (03) :177-179
[5]   Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers [J].
Ding, Kaining ;
Aeberhard, Urs ;
Finger, Friedhelm ;
Rau, Uwe .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (05) :193-195
[6]  
Fonash Stephen., 1981, Solar cell device physics
[7]  
Fujiwara H, 2006, WORL CON PHOTOVOLT E, P1443
[8]   Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide [J].
Ge, Jia ;
Tang, Muzhi ;
Wong, Johnson ;
Zhang, Zhenhao ;
Dippell, Torsten ;
Doerr, Manfred ;
Hohn, Oliver ;
Huber, Marco ;
Wohlfart, Peter ;
Aberle, Armin G. ;
Mueller, Thomas .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
[9]   Solar cell efficiency tables (version 52) [J].
Green, Martin A. ;
Hishikawa, Yoshihiro ;
Dunlop, Ewan D. ;
Levi, Dean H. ;
Hohl-Ebinger, Jochen ;
Ho-Baillie, Anita W. Y. .
PROGRESS IN PHOTOVOLTAICS, 2018, 26 (07) :427-436
[10]   Doped SiOx emitter layer in amorphous/crystalline silicon heterojunction solar cell [J].
Izzi, M. ;
Tucci, M. ;
Serenelli, L. ;
Mangiapane, P. ;
Della Noce, M. ;
Usatii, I. ;
Esposito, E. ;
Mercaldo, L. V. ;
Veneri, P. Delli .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 115 (02) :705-712