Magnetic-field effects on nonlinear electrostatic-wave Landau damping

被引:15
作者
Valentini, F [1 ]
Veltri, P
Mangeney, A
机构
[1] Univ Calabria, Dipartimento Fis, I-87030 Arcavacata Di Rende, Italy
[2] Ist Nazl Fis Mat, Unita Cosenza, I-87030 Arcavacata Di Rende, Italy
[3] Observ Paris, Sect Meudon, LESIA, F-92195 Meudon, France
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 01期
关键词
D O I
10.1103/PhysRevE.71.016402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A numerical code, which solves the Vlasov-Poisson system of equations for an electron magnetized plasma with motionless ions, is presented. the numerical integration of the Vlasov equation has been performed using the "splitting method" and the cylindric geometry in the velocity space is used to describe the motion of the particles around the external field. The time evolution of an electrostatic wave,, propagating perpendicularly to the background magnetic field, is numerically studied in both the linear and nonlinear regimes, for different values of the ratio gamma between, the electron oscillation time in a sinusoidal potential well and the electron cyclotron period. It is shown that the external magnetic field plays very different roles, depending on the values of the initial wave amplitude. When the initial amplitude is less than some threshold, the magnetic field prevents the Landau damping of the electrostatic wave (Bemstein-Landau paradox). When the wave amplitude is above the threshold, for intermediate values of gamma the presence of a background magnetic field allows for the electric energy dissipation at variance with the behavior of electrostatic wave in unmagnetized plasma, while for high gamma values once again the magnetic field prevents the damping.
引用
收藏
页数:8
相关论文
共 20 条
[1]   PLASMA OSCILLATIONS PERPENDICULAR TO A WEAK MAGNETIC FIELD [J].
BALDWIN, DE ;
ROWLANDS, G .
PHYSICS OF FLUIDS, 1966, 9 (12) :2444-&
[2]   WAVES IN A PLASMA IN A MAGNETIC FIELD [J].
BERNSTEIN, IB .
PHYSICAL REVIEW, 1958, 109 (01) :10-21
[3]   Asymptotic evolution of nonlinear Landau damping [J].
Brunetti, M ;
Califano, F ;
Pegoraro, F .
PHYSICAL REVIEW E, 2000, 62 (03) :4109-4114
[4]   Vlasov-Maxwell simulations of high-frequency longitudinal waves in a magnetized plasma [J].
Califano, F ;
Lontano, M .
PHYSICAL REVIEW E, 2003, 67 (05) :5
[5]   INTEGRATION OF VLASOV EQUATION IN CONFIGURATION SPACE [J].
CHENG, CZ ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (03) :330-351
[6]   Measurement of Landau damping and the evolution to a BGK equilibrium [J].
Danielson, JR ;
Anderegg, F ;
Driscoll, CF .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :245003-1
[7]   Velocity width of the resonant domain in wave-particle interaction [J].
Firpo, MC ;
Doveil, F .
PHYSICAL REVIEW E, 2002, 65 (01) :1-016411
[8]   High resolution schemes for hyperbolic conservation laws (Reprinted from the Journal of Computational Physics, vol 49, pg 357-393, 1983) [J].
Harten, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :260-278
[9]   Uniformly high order accurate essentially non-oscillatory schemes .3. (Reprinted from Journal of Computational Physics, vol 71, pg 231, 1987) [J].
Harten, A ;
Engquist, B ;
Osher, S ;
Chakravarthy, SR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :3-47
[10]  
HARTEN A, 1986, J COMPUT PHYS, V131, P247