A mixed method for axisymmetric div-curl systems

被引:24
作者
Copeland, Dylan M. [1 ]
Gopalakrishnan, Jayadeep [2 ]
Pasciak, Joseph E. [3 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Mat, A-4040 Linz, Austria
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
mixed methods; Nedelec elements; axisymmetry; Maxwell's equations; div-curl systems; magnetostatics;
D O I
10.1090/S0025-5718-08-02102-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nedelec elements ( for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.
引用
收藏
页码:1941 / 1965
页数:25
相关论文
共 19 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[4]   Theoretical tools to solve the axisymmetric Maxwell equations [J].
Assous, F ;
Ciarlet, P ;
Labrunie, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (01) :49-78
[5]   Weighted Clement operator and application to the finite element discretization of the axisymmetric Stokes problem [J].
Belhachmi, Zakaria ;
Bernardi, Christine ;
Deparis, Simone .
NUMERISCHE MATHEMATIK, 2006, 105 (02) :217-247
[6]  
BERNARDI C, 1999, SERIES APPL MATH, V3
[7]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[8]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[9]  
CHINELLATO O, 2005, THESIS SWISS FEDERAL
[10]   A least-squares method for axisymmetric div-curl systems [J].
Copeland, Dylan M. ;
Pasciak, Joseph E. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (09) :733-752