ALD for clean energy conversion, utilization, and storage

被引:99
|
作者
Elam, Jeffrey W. [1 ]
Dasgupta, Neil P. [2 ]
Prinz, Fritz B. [2 ]
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
ATOMIC LAYER DEPOSITION; YTTRIA-STABILIZED ZIRCONIA; OXIDE FUEL-CELLS; SULFIDE THIN-FILMS; GROWTH; ZNO; PLATINUM; EPITAXY;
D O I
10.1557/mrs.2011.265
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposition (ALD) uses self-limiting chemical reactions between gaseous precursors and a solid surface to deposit materials in a layer-by-layer fashion. This process results in a unique combination of attributes, including sub-nm precision, the capability to engineer surfaces and interfaces, and unparalleled conformality over high-aspect ratio and nanoporous structures. Given these capabilities, ALD could play a central role in achieving the technological advances necessary to redirect our economy from fossil-based energy to clean, renewable energy. This article will survey some of the recent work applying ALD to clean energy conversion, utilization, and storage, including research in solid oxide fuel cells, thin-film photovoltaics, lithium-ion batteries, and heterogenous catalysts. Throughout the manuscript, we will emphasize how the unique qualities of ALD can enhance device performance and enable radical new designs.
引用
收藏
页码:899 / 906
页数:8
相关论文
共 50 条
  • [41] Can energy intensity, clean energy utilization, economic expansion, and financial development contribute to ecological progress in Iceland? A quantile-on-quantile KRLS analysis
    Somoye, Oluwatoyin Abidemi
    Ayobamiji, Awosusi Abraham
    NATURAL RESOURCES FORUM, 2024,
  • [42] Highly Efficient Materials Assembly Via Electrophoretic Deposition for Electrochemical Energy Conversion and Storage Devices
    Ye, Luhan
    Wen, Kechun
    Zhang, Zuoxiang
    Yang, Fei
    Liang, Yachun
    Lv, Weiqiang
    Lin, Yukun
    Gu, Jianmin
    Dickerson, James H.
    He, Weidong
    ADVANCED ENERGY MATERIALS, 2016, 6 (07)
  • [43] Recent advances in TiO2 nanoarrays/graphene for water treatment and energy conversion/storage
    Fan, Yanhua
    Hu, Guangwu
    Yu, Shuaiqin
    Mai, Liqiang
    Xu, Lin
    SCIENCE CHINA-MATERIALS, 2019, 62 (03) : 325 - 340
  • [44] Plasma nanotechnology: novel tool for high-performance electrode materials for energy storage and conversion
    Ouyang, Bo
    Kan, Erjun
    Rawat, Rajdeep Singh
    REVIEWS OF MODERN PLASMA PHYSICS, 2023, 7 (01)
  • [45] Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion
    Zhao, Huaping
    Zhou, Min
    Wen, Liaoyong
    Lei, Yong
    NANO ENERGY, 2015, 13 : 790 - 813
  • [46] Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
    Aziz, Muhammad
    Wijayanta, Agung Tri
    Nandiyanto, Asep Bayu Dani
    ENERGIES, 2020, 13 (12)
  • [47] Research on the Effect of Clean Energy Technology Diffusion on Energy Poverty
    Jiang, Yuan
    Wang, Weidong
    Yang, Mengyuan
    Njie, Yahya
    Wang, Xiaonan
    SUSTAINABILITY, 2024, 16 (16)
  • [48] Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications
    Hemanth, N. R.
    Kim, Taekyung
    Kim, Byeongyoon
    Jadhav, Arvind H.
    Lee, Kwangyeol
    Chaudhari, Nitin K.
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (08) : 3298 - 3321
  • [49] Fabrication of p-type cubic γ-CuI by solid iodination process for energy conversion and storage applications
    Chinnakutti, Karthik Kumar
    Panneerselvam, Vengatesh
    Govindarajan, Durai
    Salammal, Shyju Thankaraj
    MATERIALS TODAY-PROCEEDINGS, 2020, 23 : 34 - 38
  • [50] An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers
    Drobek, Martin
    Bechelany, Mikhael
    Vallicari, Cyril
    Abou Chaaya, Adib
    Charmette, Christophe
    Salvador-Levehang, Claudia
    Miele, Philippe
    Julbe, Anne
    JOURNAL OF MEMBRANE SCIENCE, 2015, 475 : 39 - 46