Regularity results for parabolic systems related to a class of non-Newtonian fluids

被引:149
作者
Acerbi, E
Mingione, G
Seregin, GA
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] VA Steklov Math Inst, St Petersburg Branch, St Petersburg 191011, Russia
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2004年 / 21卷 / 01期
关键词
D O I
10.1016/j.anihpc.2002.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of parabolic systems of the type: u(t) - div a(x, t, Du) = 0 where the vector field a(x, t, F) exhibits non-standard growth conditions. These systems arise when studying certain classes of non-Newtonian fluids such as electrorheological fluids or fluids with viscosity depending on the temperature. For properly defined weak solutions to such systems, we prove various regularity properties: higher integrability, higher differentiability, partial regularity of the spatial gradient, estimates for the (parabolic) Hausdorff dimension of the singular set. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:25 / 60
页数:36
相关论文
共 38 条
[21]  
LADYZHENSKAYA OA, 1967, P STEKLOV I MATH, V102
[22]  
LADYZHENSKAYA OA, 1968, P INT C MATH MOSC 19, P560
[23]  
Lieberman G., 1994, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V21, P497
[24]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE
[25]  
Malek J., 2001, Adv. Differential Equations, V6, P257, DOI 10.57262/ade/1357141212
[26]  
Malek J., 1996, APPL MATH MATH COMP, V13
[27]   REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS [J].
MARCELLINI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :1-30
[28]  
Marcellini P., 1987, EXEMPLE SOLUTION DIS
[29]   The singular set of solutions to non-differentiable elliptic systems [J].
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (04) :287-301
[30]   FLOW OF ELECTRORHEOLOGICAL MATERIALS [J].
RAJAGOPAL, KR ;
WINEMAN, AS .
ACTA MECHANICA, 1992, 91 (1-2) :57-75