On coupling fluid plasma and kinetic neutral physics models

被引:3
作者
Joseph, I. [1 ]
Rensink, M. E. [1 ]
Stotler, D. P. [2 ]
Dimits, A. M. [1 ]
LoDestro, L. L. [1 ]
Porter, G. D. [1 ]
Rognlien, T. D. [1 ]
Sjogreen, B. [1 ]
Umansky, M. V. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
关键词
Divertor modeling; Charge exchange; Ionization; Recombination; Implicit; Newton-Krylov; UEDGE; DEGAS2; EIRENE; SOLPS; VOLUME/MONTE-CARLO CODES; NONLINEAR ACCELERATION; EDGE SIMULATIONS; TRANSPORT; CONVERGENCE; IMPLICIT; ACCURACY;
D O I
10.1016/j.nme.2017.02.021
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton-Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:813 / 818
页数:6
相关论文
共 24 条
  • [1] BRACKBILL JU, 1985, MULTIPLE TIME SCALES
  • [2] Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations
    Chen, G.
    Chacon, L.
    Leibs, C. A.
    Knoll, D. A.
    Taitano, W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 : 555 - 567
  • [3] ORBIT-AVERAGED IMPLICIT PARTICLE CODES
    COHEN, BI
    FREIS, RP
    THOMAS, V
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 45 (03) : 345 - 366
  • [4] ECHEKKI T, 2009, COMPUT SCI DISCOVERY, V2
  • [5] Two classes of multisecant methods for nonlinear acceleration
    Fang, Haw-ren
    Saad, Yousef
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (03) : 197 - 221
  • [6] IMPLICIT MONTE CARLO SCHEME FOR CALCULATING TIME AND FREQUENCY DEPENDENT NONLINEAR RADIATION TRANSPORT
    FLECK, JA
    CUMMINGS, JD
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 8 (03) : 313 - &
  • [7] Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors
    Ghoos, K.
    Dekeyser, W.
    Samaey, G.
    Boerner, P.
    Baelmans, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 : 162 - 182
  • [8] Accuracy and Convergence of Coupled Finite-Volume/Monte-Carlo Codes for Plasma Edge Simulations
    Ghoos, K.
    Dekeyser, W.
    Samaey, G.
    Boerner, P.
    Reiter, D.
    Baelmans, M.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (6-8) : 616 - 621
  • [9] Application of the Jacobian-Free Newton-Krylov Method to Nonlinear Acceleration of Transport Source Iteration in Slab Geometry
    Knoll, D. A.
    Park, H.
    Smith, Kord
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (02) : 122 - 132
  • [10] Jacobian-free Newton-Krylov methods: a survey of approaches and applications
    Knoll, DA
    Keyes, DE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (02) : 357 - 397