Current Distribution and Input Impedance of an Insulated Linear Antenna in an Anisotropic Plasma

被引:13
作者
Zeng, Hui Ran [1 ]
He, Tong [2 ]
Li, Kai [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Intelligent Network Res Ctr, Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
美国国家科学基金会;
关键词
Anisotropic plasma; input impedance; insulated linear antenna; very low-frequency (VLF) electromagnetic (EM) wave; CYLINDRICAL-ANTENNA; RADIATION-RESISTANCE; WAVE-PROPAGATION; ELECTRIC-DIPOLE; CONDUCTING WIRE; VLF RADIATION;
D O I
10.1109/TAP.2019.2951531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a new analytical method is proposed to solve the current distribution and input impedance of an insulated linear antenna in a homogeneous anisotropic ionosphere over a very low-frequency (VLF: 3-30 kHz) range. Due to the presence of the insulating layer, both the boundary conditions and the kernel function of the antenna are more complicated. The determination of the wave number k(L) requires extra analytical techniques, as the pole equation satisfied by k(L) will include both the ordinary and extraordinary waves. Computations show that for insulating layers of small thickness, the amplitude coefficient increases with the plasma density. However, if the insulation is sufficiently thick, then the coefficient will only be slightly affected by the plasma parameters. It is, thus, inferred that an insulating layer tends to make the antenna characteristics less dependent on the ambient plasma and, thus, more predictable. In addition, it is found that the input impedance of the antenna significantly increases with the insulation thickness. Calculations of driving-point admittances are presented for two case studies and compared with existing analytical work and the simulation results. Finally, this article may provide some heuristic support for designing VLF space-borne insulated linear antennas.
引用
收藏
页码:2541 / 2549
页数:9
相关论文
共 50 条
  • [31] Properties of the Input Impedance of a THz Dipole Antenna on Top of a Woodpile Structure
    Ederra, Inigo
    Iriarte-Galarregui, Juan-Carlos
    Gonzalo, Ramon
    de Maagt, Peter
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2013, 3 (06) : 731 - 739
  • [32] Theory of Input Impedance of a Slot Antenna With Two Parasitically Excited Wires
    Ding, Junming
    Tang, Min
    Zhang, Yueping
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (06): : 1779 - 1783
  • [33] Input impedance calculation for a cylindrical microstrip antenna fed by a microstrip line
    A. Ye. Svezhentsev
    [J]. Radiophysics and Quantum Electronics, 2008, 51 : 200 - 209
  • [34] Theory of a Square Loop Antenna in an Anisotropic Magnetized Plasma
    Li, Zheng Xu
    Zeng, Hui Ran
    Li, Kai
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (02) : 1250 - 1262
  • [35] Scattering of electromagnetic waves by an impedance sheet junction in anisotropic plasma
    Umul, Yusuf Ziya
    [J]. OPTIK, 2020, 224
  • [36] Input impedance of rectangular microstrip patch antenna using artificial neural networks
    Pattnaik, SS
    Panda, DC
    Devi, S
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 32 (05) : 381 - 383
  • [37] Negative input impedance of a dipole antenna printed on a grounded tellegen metamaterial substrate
    Zebiri, C.
    Bouknia, M. L.
    Sayad, D.
    Elfergani, I
    Yupapin, Preecha
    Matin, M.
    Desai, Arpan
    Palandoken, Merih
    Iqbal, A.
    Rodriguez, J.
    [J]. WIRELESS NETWORKS, 2022, 28 (05) : 2237 - 2254
  • [38] Negative input impedance of a dipole antenna printed on a grounded tellegen metamaterial substrate
    C. Zebiri
    M. L. Bouknia
    D. Sayad
    I. Elfergani
    Preecha Yupapin
    M. Matin
    Arpan Desai
    Merih Palandoken
    A. Iqbal
    J. Rodriguez
    [J]. Wireless Networks, 2022, 28 : 2237 - 2254
  • [39] Antenna design for RF Ion Heating of anisotropic magnetized plasma
    Torrisi, G.
    Mauro, G. S.
    Mascali, D.
    Galata, A.
    Celona, L.
    Sorbello, G.
    Gammino, S.
    [J]. 2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
  • [40] Input Impedance Model of Planar Dipole Antenna for Wireless Body Area Network (WBAN)
    Pramudita, A. A.
    [J]. 2016 22ND ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2016, : 66 - 69