Upper bounds for Fourier decay rates of fractal measures

被引:7
作者
Du, Xiumin [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2020年 / 102卷 / 03期
基金
美国国家科学基金会;
关键词
42B37; (primary); DIMENSION;
D O I
10.1112/jlms.12364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For spherical and parabolic averages of the Fourier transform of fractal measures, we obtain new upper bounds on rates of decay by an 'intermediate dimension' trick.
引用
收藏
页码:1318 / 1336
页数:19
相关论文
共 15 条
[1]   Some special solutions of the Schrodinger equation [J].
Barcelo, J. A. ;
Bennett, J. M. ;
Carbery, A. ;
Ruiz, A. ;
Vilela, M. C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1581-1593
[2]   A note on the Schrodinger maximal function [J].
Bourgain, J. .
JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 :393-396
[3]  
Cho C.H., 2018, ARXIV180903246
[4]  
Du X., 2018, ARXIV180210186
[5]  
Du X., 2019, MATH RES LETT
[6]   Sharp L2 estimates of the Schrodinger maximal function in higher dimensions [J].
Du, Xiumin ;
Zhang, Ruixiang .
ANNALS OF MATHEMATICS, 2019, 189 (03) :837-861
[7]   ON THE HAUSDORFF DIMENSIONS OF DISTANCE SETS [J].
FALCONER, KJ .
MATHEMATIKA, 1985, 32 (64) :206-212
[8]  
FRICKER F, 1982, EINFUHRUNG GITTERPUN
[9]   On Falconer's distance set problem in the plane [J].
Guth, Larry ;
Iosevich, Alex ;
Ou, Yumeng ;
Wang, Hong .
INVENTIONES MATHEMATICAE, 2020, 219 (03) :779-830
[10]   An L2-identity and pinned distance problem [J].
Liu, Bochen .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (01) :283-294