Laser induced breakdown spectroscopy for the rapid detection of SARS-CoV-2 immune response in plasma

被引:21
作者
Berlo, K. [1 ]
Xia, W. [2 ,3 ]
Zwillich, F. [1 ]
Gibbons, E. [1 ]
Gaudiuso, R. [4 ]
Ewusi-Annan, E. [4 ]
Chiklis, G. R. [5 ]
Melikechi, N. [4 ]
机构
[1] McGill Univ, GEOTOP Res Ctr, Dept Earth & Planetary Sci, Montreal, PQ, Canada
[2] Bedford VA Healthcare Syst, Geriatr Res Educ Clin Ctr, Bedford, MA USA
[3] Boston Univ, Dept Pharmacol & Expt Therapeut, Sch Med, Boston, MA USA
[4] Univ Massachusetts, Kennedy Coll Sci, Dept Phys & Appl Phys, Lowell, MA USA
[5] MRN Diagnost, Franklin, MA USA
基金
加拿大创新基金会;
关键词
CANCER; DISCRIMINATION; ZINC;
D O I
10.1038/s41598-022-05509-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the SARS-CoV-2 pandemic persists, methods that can quickly and reliably confirm infection and immune status is extremely urgently and critically needed. In this contribution we show that combining laser induced breakdown spectroscopy (LIBS) with machine learning can distinguish plasma of donors who previously tested positive for SARS-CoV-2 by RT-PCR from those who did not, with up to 95% accuracy. The samples were also analyzed by LIBS-ICP-MS in tandem mode, implicating a depletion of Zn and Ba in samples of SARS-CoV-2 positive subjects that inversely correlate with CN lines in the LIBS spectra.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Estimation of US SARS-CoV-2 Infections, Symptomatic Infections, Hospitalizations, and Deaths Using Seroprevalence Surveys [J].
Angulo, Frederick J. ;
Finelli, Lyn ;
Swerdlow, David L. .
JAMA NETWORK OPEN, 2021, 4 (01)
[2]  
[Anonymous], NAT COMM LAB SER SUR
[3]   Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review [J].
Arentz, Susan ;
Hunter, Jennifer ;
Yang, Guoyan ;
Goldenberg, Joshua ;
Beardsley, Jennifer ;
Myers, Stephen P. ;
Mertz, Dominik ;
Leeder, Stephen .
ADVANCES IN INTEGRATIVE MEDICINE, 2020, 7 (04) :252-260
[4]   Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy [J].
Baudelet, M ;
Guyon, L ;
Yu, J ;
Wolf, JP ;
Amodeo, T ;
Fréjafon, E ;
Laloi, P .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[5]   Laser-induced breakdown spectroscopy assisted by machine learning for olive oils classification: The effect of the experimental parameters [J].
Bellou, Elli ;
Gyftokostas, Nikolaos ;
Stefas, Dimitrios ;
Gazeli, Odhisea ;
Couris, Stelios .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 163
[6]   Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples [J].
Chen, Xue ;
Li, Xiaohui ;
Yang, Sibo ;
Yu, Xin ;
Liu, Aichun .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (03) :1057-1068
[7]  
Cremers DA, 2013, HANDBOOK OF LASER-INDUCED BREAKDOWN SPECTROSCOPY, 2ND EDITION, P1, DOI 10.1002/9781118567371
[8]   The effects of some essential and toxic metals/metalloids in COVID-19: A review [J].
Domingo, Jose L. ;
Marques, Montse .
FOOD AND CHEMICAL TOXICOLOGY, 2021, 152
[9]   Diagnosis of Alzheimer's disease using laser-induced breakdown spectroscopy and machine learning [J].
Gaudiuso, Rosalba ;
Ewusi-Annan, Ebo ;
Xia, Weiming ;
Melikechi, Noureddine .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 171
[10]   Laser-induced breakdown spectroscopy for human and animal health: A review [J].
Gaudiuso, Rosalba ;
Melikechi, Noureddine ;
Abdel-Salam, Zienab A. ;
Harith, Mohamed A. ;
Palleschi, Vincenzo ;
Motto-Ros, Vincent ;
Busser, Benoit .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2019, 152 :123-148