Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids

被引:16
作者
Niche, Cesar J. [1 ]
Perusato, Cilon F. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50740560 Recife, PE, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 02期
关键词
Asymptotic behaviour; Decay rates; Magneto-micropolar equations; LARGE TIME DECAY; WEAK SOLUTIONS; BLOW-UP; BOUNDARY-CONDITIONS; GLOBAL EXISTENCE; EQUATIONS; REGULARITY; SYSTEM; FLOW; UNIQUENESS;
D O I
10.1007/s00033-022-01683-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the L-2 decay rate of solutions to the 3D magneto-micropolar system in terms of the decay character of the initial datum. Due to a linear damping term, the microrotational field has a faster decay rate. We also address the asymptotic behaviour of solutions by comparing them to solutions to the linear part. As a result of the linear damping, the difference between the microrotational field and its linear part also decays faster. As part of the proofs of these results, we prove estimates for the derivatives of solutions which might be of independent interest.
引用
收藏
页数:20
相关论文
共 58 条
[1]   UNIVERSAL STABILITY OF MAGNETOMICROPOLAR FLUID MOTIONS [J].
AHMADI, G ;
SHAHINPOOR, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (07) :657-663
[2]  
Bjorland C, 2009, ADV DIFFERENTIAL EQU, V14, P241
[3]  
Boldrini J.L., 2010, Ann. Univ. Ferrara, Sez. VII, V56, P37
[4]   CHARACTERIZATION OF SOLUTIONS TO DISSIPATIVE SYSTEMS WITH SHARP ALGEBRAIC DECAY [J].
Brandolese, Lorenzo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1616-1633
[5]   Exponential stability for magneto-micropolar fluids [J].
Braz e Silva, P. ;
Friz, L. ;
Rojas-Medar, M. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 :211-223
[6]   Lower Bounds on Blow-up of Solutions for Magneto-Micropolar Fluid Systems in Homogeneous Sobolev Spaces [J].
Braz e Silva, Pablo ;
Melo, Wilberclay G. ;
Zingano, Paulo R. .
ACTA APPLICANDAE MATHEMATICAE, 2017, 147 (01) :1-17
[7]   On the L2 decay of weak solutions for the 3D asymmetric fluids equations [J].
Braze e Silva, P. ;
Cruz, F. W. ;
Freitas, L. B. S. ;
Zingano, P. R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (06) :3578-3609
[8]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[9]  
Cruz FW, 2020, Z ANGEW MATH PHYS, V71, DOI 10.1007/s00033-020-01314-8
[10]  
ERINGEN AC, 1966, J MATH MECH, V16, P1