Vertex algebras at the corner

被引:90
|
作者
Gaiotto, Davide [1 ]
Rapcak, Miroslav [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
Conformal and W Symmetry; Duality in Gauge Field Theories; Extended Supersymmetry; Wilson; 't Hooft and Polyakov loops; FIELD-THEORY; QUANTIZATION; DUALITY; REPRESENTATION; BRANES;
D O I
10.1007/JHEP01(2019)160
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce a class of Vertex Operator Algebras which arise at junctions of supersymmetric interfaces in N = 4 Super Yang Mills gauge theory. These vertex algebras satisfy non-trivial duality relations inherited from S-duality of the four-dimensional gauge theory. The gauge theory construction equips the vertex algebras with collections of modules labelled by supersymmetric interface line defects. We discuss in detail the simplest class of algebras Y-L,Y-M,Y-N, which generalizes W-N algebras. We uncover tantalizing relations between Y-L,Y-M,Y-N, the topological vertex and the W1+ algebra.
引用
收藏
页数:88
相关论文
共 50 条
  • [1] Vertex algebras at the corner
    Davide Gaiotto
    Miroslav Rapčák
    Journal of High Energy Physics, 2019
  • [2] Cluster algebras based on vertex operator algebras
    Zuevsky, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [3] Modularity of logarithmic parafermion vertex algebras
    Auger, Jean
    Creutzig, Thomas
    Ridout, David
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (12) : 2543 - 2587
  • [4] VERTEX ALGEBRAS AND QUANTUM MASTER EQUATION
    Li, Si
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 123 (03) : 461 - 521
  • [5] Schottky vertex operator cluster algebras
    Zuevsky, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17):
  • [6] Bimodules associated to modules of vertex operator algebras
    Jiang, Wei
    Zhang, Wei
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2227 - 2250
  • [7] The Vertex Algebras R(p) and V(p)
    Adamovic, Drazen
    Creutzig, Thomas
    Genra, Naoki
    Yang, Jinwei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1207 - 1241
  • [8] Towards automorphic to differential correspondence for vertex algebras
    Zuevsky, Alexander
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 603 - 610
  • [9] Extensions of vertex algebras. Constructions and applications
    Feigin, B. L.
    RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (04) : 707 - 763
  • [10] Sheets and associated varieties of affine vertex algebras
    Arakawa, Tomoyuki
    Moreau, Anne
    ADVANCES IN MATHEMATICS, 2017, 320 : 157 - 209