What is a fractional derivative?

被引:351
作者
Ortigueira, Manuel D. [1 ,2 ]
Tenreiro Machado, J. A. [3 ]
机构
[1] UNL, Fac Ciencias & Tecnol, UNINOVA, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] UNL, Fac Ciencias & Tecnol, DEE, P-2829516 Quinta Da Torre, Caparica, Portugal
[3] Polytech Porto, Inst Engn, Dept Elect Engn, Oporto, Portugal
关键词
Fractional derivative; Riesz potential; Fractional calculus; PROBABILITY INTERPRETATION; CALCULUS;
D O I
10.1016/j.jcp.2014.07.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grunwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4 / 13
页数:10
相关论文
共 44 条
[1]  
[Anonymous], 1964, GEN FUNCTIONS PROPER
[2]  
[Anonymous], 1998, TRANSFORM METHODS SP
[3]  
[Anonymous], 1998, TRANSFORM METHODS SP
[4]  
[Anonymous], 2000, The College Mathematics Journal, DOI [DOI 10.2307/2687575, DOI 10.1080/07468342.2000.11974118, 10.2307/2687575]
[5]  
[Anonymous], 6 WORKSH FRACT DIFF
[6]  
[Anonymous], 1952, MEDD LUNDS U MAT SEM
[7]  
[Anonymous], SIGNAL PROCESS
[8]  
[Anonymous], SERIES COMPLEXITY NO
[9]  
[Anonymous], 2006, Journal of the Electrochemical Society
[10]  
[Anonymous], ARXIV14023019