A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes

被引:48
作者
Feng, Yong-Qiang [1 ]
Zheng, Zi-Jian [3 ]
Wang, Cao-Yu [1 ]
Yin, Ya-Xia [2 ,4 ]
Ye, Huan [1 ]
Cao, Fei-Fei [1 ]
Guo, Yu-Guo [2 ,4 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci BNLMS,Inst Chem, Beijing 100190, Peoples R China
[3] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Key Lab Green Preparat & Applicat Funct MatMinist, Hubei Key Lab Polymer Mat,Sch Mat Sci & Engn, Wuhan 430062, Peoples R China
[4] Univ Chinese Acad Sci CAS, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium metal batteries; Lithium anodes; Nanocrystallization; Wettability; Long lifespan; DENDRITE-FREE; COMPOSITE; BATTERIES; HOST;
D O I
10.1016/j.nanoen.2020.104731
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Regulating the surface morphology or physical properties of current collectors, and thus tuning the wettability of liquefied Li toward substrates, is of tremendous interest for stabilizing Li metal anodes. Here we show the wettability of molten Li toward substrates can be tuned by nonreactive surface nanocrystallization strategy. The nanocrystallization structural features result in a surface energy reduction and generation of Laplace pressure, with both factors acting together to achieve a rapid adsorption of Li. The as-obtained Li composite anode exhibits a stable and low voltage hysteresis of less than 20 mV for over 2000 h at 0.5 mA cm(-2) in a symmetrical cell owing to metal nanoseeds in the 3D scaffold. Equipped with the fabricated Li metal anode, a rechargeable Li metal battery with LiFePO4 cathode that features a high areal capacity of over 3 mA h cm(-2) and long cycling stability is achieved. This finding provides a facile and cost-effective strategy for stabilizing Li metal for high-energy batteries.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[3]   Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium [J].
Chang, Jian ;
Shang, Jian ;
Sun, Yongming ;
Ono, Luis K. ;
Wang, Dongrui ;
Ma, Zhijun ;
Huang, Qiyao ;
Chen, Dongdong ;
Liu, Guoqiang ;
Cui, Yi ;
Qi, Yabing ;
Zheng, Zijian .
NATURE COMMUNICATIONS, 2018, 9
[4]   High-Energy Li Metal Battery with Lithiated Host [J].
Chen, Long ;
Fan, Xiulin ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Wang, Chunsheng .
JOULE, 2019, 3 (03) :732-744
[5]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries [J].
Cheng, Yifeng ;
Ke, Xi ;
Chen, Yuanmao ;
Huang, Xinyue ;
Shi, Zhicong ;
Guo, Zaiping .
NANO ENERGY, 2019, 63
[8]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[9]   Stabilizing polymer electrolytes in high-voltage lithium batteries [J].
Choudhury, Snehashis ;
Tu, Zhengyuan ;
Nijamudheen, A. ;
Zachman, Michael J. ;
Stalin, Sanjuna ;
Deng, Yue ;
Zhao, Qing ;
Vu, Duylinh ;
Kourkoutis, Lena F. ;
Mendoza-Cortes, Jose L. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
DRZMALA J, 1994, ADV COLLOID INTERFAC, V50, P143