Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks

被引:246
作者
Furrer, F. [1 ]
Franz, T. [1 ]
Berta, M. [2 ]
Leverrier, A. [2 ]
Scholz, V. B. [1 ]
Tomamichel, M. [2 ]
Werner, R. F. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevLett.109.100502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.
引用
收藏
页数:5
相关论文
共 28 条
  • [1] Berta M., ARXIV11075460V1
  • [2] Universally composable security: A new paradigm for cryptographic protocols
    Canetti, R
    [J]. 42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 136 - 145
  • [3] One-and-a-half quantum de Finetti theorems
    Christandl, Matthias
    Koenig, Robert
    Mitchison, Graeme
    Renner, Renato
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 473 - 498
  • [4] Postselection Technique for Quantum Channels with Applications to Quantum Cryptography
    Christandl, Matthias
    Koenig, Robert
    Renner, Renato
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (02)
  • [5] Distillation of secret key and entanglement from quantum states
    Devetak, I
    Winter, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053): : 207 - 235
  • [6] Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source
    Eberle, Tobias
    Haendchen, Vitus
    Duhme, Joerg
    Franz, Torsten
    Werner, Reinhard F.
    Schnabel, Roman
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):
  • [7] Min- and Max-Entropy in Infinite Dimensions
    Furrer, Fabian
    Aberg, Johan
    Renner, Renato
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (01) : 165 - 186
  • [8] Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution
    Garcia-Patron, Raul
    Cerf, Nicolas J.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [9] Gottesman D, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.022309
  • [10] Continuous-variable quantum cryptography is secure against non-Gaussian attacks
    Grosshans, F
    Cerf, NJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (04) : 4