Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks

被引:254
作者
Furrer, F. [1 ]
Franz, T. [1 ]
Berta, M. [2 ]
Leverrier, A. [2 ]
Scholz, V. B. [1 ]
Tomamichel, M. [2 ]
Werner, R. F. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevLett.109.100502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.
引用
收藏
页数:5
相关论文
共 28 条
[1]  
Berta M., ARXIV11075460V1
[2]   Universally composable security: A new paradigm for cryptographic protocols [J].
Canetti, R .
42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, :136-145
[3]   One-and-a-half quantum de Finetti theorems [J].
Christandl, Matthias ;
Koenig, Robert ;
Mitchison, Graeme ;
Renner, Renato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) :473-498
[4]   Postselection Technique for Quantum Channels with Applications to Quantum Cryptography [J].
Christandl, Matthias ;
Koenig, Robert ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[5]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235
[6]   Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source [J].
Eberle, Tobias ;
Haendchen, Vitus ;
Duhme, Joerg ;
Franz, Torsten ;
Werner, Reinhard F. ;
Schnabel, Roman .
PHYSICAL REVIEW A, 2011, 83 (05)
[7]   Min- and Max-Entropy in Infinite Dimensions [J].
Furrer, Fabian ;
Aberg, Johan ;
Renner, Renato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (01) :165-186
[8]   Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution [J].
Garcia-Patron, Raul ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[9]  
Gottesman D, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.022309
[10]   Continuous-variable quantum cryptography is secure against non-Gaussian attacks [J].
Grosshans, F ;
Cerf, NJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4