MODELING AND IDENTIFICATION OF HEAT EXCHANGER PROCESS USING LEAST SQUARES SUPPORT VECTOR MACHINES

被引:14
作者
Al-Dhaifallah, Mujahed [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Agarwal, Praveen [3 ]
Elsayyad, Alaa [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Syst Engn Dept, Dhahran, Saudi Arabia
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci Wadi Addwaser, Dept Math, Al Kharj, Saudi Arabia
[3] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
来源
THERMAL SCIENCE | 2017年 / 21卷 / 06期
关键词
Hammerstein model; heat exchanger; identification; support vector machine; HAMMERSTEIN SYSTEMS; SUBSPACE IDENTIFICATION; OPTIMIZATION;
D O I
10.2298/TSCI151026204A
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, Hammerstein model and non-linear autoregressive with eXogeneous inputs (NARX) model are used to represent tubular heat exchanger. Both models have been identified using least squares support vector machines based algorithms. Both algorithms were able to model the heat exchanger system without requiring any a priori assumptions regarding its structure. The results indicate that the blackbox NARX model outperforms the NARX Hammerstein model in terms of accuracy and precision.
引用
收藏
页码:2859 / 2869
页数:11
相关论文
共 28 条
[1]   Identification of Auto-Regressive Exogenous Hammerstein Models Based on Support Vector Machine Regression [J].
Al-Dhaifllah, Mujahed ;
Westwick, David T. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (06) :2083-2090
[2]  
Alvarez JD, 2007, J PROCESS CONTR, V17, P689, DOI 10.1016/j.jprocont.2007.02.003
[3]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[4]  
[Anonymous], TIME SERIES ANAL THE
[5]   Recursive direct weight optimization in nonlinear system identification: A minimal probability approach [J].
Bai, Er-Wei ;
Liu, Yun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (07) :1218-1231
[6]   Recursive subspace identification of Hammerstein models based on least squares support vector machines [J].
Bako, L. ;
Mercere, G. ;
Lecoeuche, S. ;
Lovera, M. .
IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (09) :1209-1216
[7]  
Bittanti S., 1997, FRANKLIN I, V3348, P135
[8]  
De Moor B., 2004, Daisy: Database for the Identification of Systems
[9]   Least-Squares Support Vector Machines for the identification of Wiener-Hammerstein systems [J].
Falck, Tillmann ;
Dreesen, Philippe ;
De Brabanter, Kris ;
Pelckmans, Kristiaan ;
De Moor, Bart ;
Suykens, Johan A. K. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (11) :1165-1174
[10]   Identification of MIMO Hammerstein models using least squares support vector machines [J].
Goethals, I ;
Pelckmans, K ;
Suykens, JAK ;
De Moor, B .
AUTOMATICA, 2005, 41 (07) :1263-1272