Use of Cellulose Nanofibers as an Electrode Binder for Lithium Ion Battery Screen Printing on a Paper Separator

被引:21
作者
El Baradai, Oussama [1 ]
Beneventi, Davide [1 ]
Alloin, Fannie [2 ]
Bultel, Yann [2 ]
Chaussy, Didier [1 ]
机构
[1] Univ Grenoble Alpes, LGP2, Grenoble INP, CNRS, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, Univ Savoie Mont Blanc, LEPMI, Grenoble INP,CNRS, F-38000 Grenoble, France
来源
NANOMATERIALS | 2018年 / 8卷 / 12期
关键词
cellulose nanofibers; Li-ion battery; printing electrode; CARBON; PERFORMANCE; INK;
D O I
10.3390/nano8120982
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water-based inks were formulated using cellulose nanofibers as a binder in order to directly front/reverse print lithium ion cells on a paper separator. Moreover, the high cohesion of electrodes as provided by cellulose nanofibers allowed for the embedding metallic current collectors in the electrodes during the printing stage, in order to develop a one-step printing and assembling process. Positive and negative inks based on LiFePO4, or graphite, respectively, and cellulose nanofibers, displayed rheological properties complying with a variety of printing processes, as well as with screen printing. Printed cells exhibited high electrical conductivity and adhesion between current collectors and inks, i.e., up to 64 +/- 1 J/m(2). Electrochemical cycling tests at C/10 showed a reversible capacity during the first cycle of about 80 mAh/g, which slightly decayed upon cycling. Preliminary results and assembling strategies can be considered as promising, and they represent a quick solution for the manufacturing of lithium ion batteries. Work is in progress to improve these processing issues and the cycling performances of Li-ion cells.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Rheological characterization of microfibrillated cellulose suspensions after freezing
    Agoda-Tandjawa, G.
    Durand, S.
    Berot, S.
    Blassel, C.
    Gaillard, C.
    Garnier, C.
    Doublier, J. -L.
    [J]. CARBOHYDRATE POLYMERS, 2010, 80 (03) : 677 - 686
  • [2] Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites
    Alloin, Fannie
    D'Aprea, Alessandra
    El Kissi, Nadia
    Dufresne, Alain
    Bossard, Frederic
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (18) : 5186 - 5194
  • [3] Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries
    Buqa, H.
    Holzapfel, M.
    Krumeich, F.
    Veit, C.
    Novak, P.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 617 - 622
  • [4] Effects of Dispersant on the Conductive Carbon for LiFePO4 Cathode
    Chang, Chia-Chin
    Her, Li-Jane
    Su, Huang-Kai
    Hsu, Sheng-Hsiang
    Yen, Yao Te
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : A481 - A486
  • [5] Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers
    Chen, ZH
    Christensen, L
    Dahn, JR
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) : 919 - 923
  • [6] Chinga G, 2003, J PULP PAP SCI, V29, P179
  • [7] Microfibrillated Cellulose Based Ink for Eco-Sustainable Screen Printed Flexible Electrodes in Lithium Ion Batteries
    El Baradai, Oussama
    Beneventi, Davide
    Alloin, Fannie
    Bongiovanni, Roberta
    Bruas-Reverdy, Nadege
    Bultel, Yann
    Chaussy, Didier
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (06) : 566 - 572
  • [8] Carbon materials for lithium-ion rechargeable batteries
    Flandrois, S
    Simon, B
    [J]. CARBON, 1999, 37 (02) : 165 - 180
  • [9] Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics
    Gaikwad, Abhinav M.
    Chu, Howie N.
    Qeraj, Rigers
    Zamarayeva, Alla M.
    Steingart, Daniel A.
    [J]. ENERGY TECHNOLOGY, 2013, 1 (2-3) : 177 - 185
  • [10] Development and characterization of a thick-film printed zinc-alkaline battery
    Ghiurcan, GA
    Liu, CC
    Webber, A
    Feddrix, FH
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) : A922 - A927