Structure-property relationship in sulfonated pentablock copolymers

被引:68
作者
Choi, Jae-Hong [1 ]
Willis, Carl L. [2 ]
Winey, Karen I. [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Kraton Polymers LLC, Houston, TX 77084 USA
关键词
Pentablock copolymer; Morphology; X-ray scattering; Water vapor transport rate; Water uptake; POLYMER ELECTROLYTE MEMBRANES; TRANSPORT-PROPERTIES; BLOCK-COPOLYMERS; EXCHANGE MEMBRANES; MORPHOLOGY; IONOMERS; METHANOL;
D O I
10.1016/j.memsci.2011.12.036
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The morphology of a series of poly(t-butylstyrene-b-hydrogenated isoprene-b-sulfonated styrene-b-hydrogenated isoprene-b-t-butylstyrene) (tBS-HI-SS-HI-tBS) pentablock copolymer membranes with a range of ion exchange capacity (IEC) was investigated with small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Comparing the sizes of the micelle cores (2R), obtained from SAXS of the micellar solutions in cyclohexane/heptane, to the interparticle distances (d), obtained from SAXS and TEM imaging of the membranes, reveals that membranes with a low SS volume fraction (0.4, 0.7 and 1.0 mequiv./g IECs) show discrete SS microdomains within a HI-tBS matrix, while high SS volume fraction membranes (1.5 and 2.0 mequiv./g IECs) exhibit a bicontinuous microphase separated morphology without long-range order. As ion exchange capacity increases from 1.0 to 1.5 mequiv./g, the morphological transition from discrete SS microdomains to interconnected SS microdomains results in a significant increase in water vapor transport rate. When exposed to liquid water, the extent of water uptake and the increase in primary spacing of the membranes are greater at higher sulfonation levels suggesting that absorbed water plasticizes the hydrophilic SS microdomains. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 25 条
[1]   Highly Selective Polymer Electrolyte Membranes from Reactive Block Polymers [J].
Chen, Liang ;
Hallinan, Daniel T., Jr. ;
Elabd, Yossef A. ;
Hillmyer, Marc A. .
MACROMOLECULES, 2009, 42 (16) :6075-6085
[2]   Micellar Morphology in Sulfonated Pentablock Copolymer Solutions [J].
Choi, Jae-Hong ;
Kota, Arun ;
Winey, Karen I. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (23) :12093-12097
[3]   Enhanced conductivity in morphologically controlled proton exchange membranes: Synthesis of macromonomers by SFRP and their incorporation into graft polymers [J].
Ding, JF ;
Chuy, C ;
Holdcroft, S .
MACROMOLECULES, 2002, 35 (04) :1348-1355
[4]   Complex impedance studies of S-SEBS block polymer proton-conducting membranes [J].
Edmondson, CA ;
Fontanella, JJ ;
Chung, SH ;
Greenbaum, SG ;
Wnek, GE .
ELECTROCHIMICA ACTA, 2001, 46 (10-11) :1623-1628
[5]   Transport properties of sulfonated poly (styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities [J].
Elabd, YA ;
Napadensky, E ;
Walker, CW ;
Winey, KI .
MACROMOLECULES, 2006, 39 (01) :399-407
[6]   Triblock copolymer ionomer membranes Part II. Structure characterization and its effects on transport properties and direct methanol fuel cell performance [J].
Elabd, YA ;
Walker, CW ;
Beyer, FL .
JOURNAL OF MEMBRANE SCIENCE, 2004, 231 (1-2) :181-188
[7]   Block Copolymers for Fuel Cells [J].
Elabd, Yossef A. ;
Hickner, Michael A. .
MACROMOLECULES, 2011, 44 (01) :1-11
[8]  
Geise C. M., 2009, ANTEC 2009 P 67 ANN, P97
[9]   Characterization of a sulfonated pentablock copolymer for desalination applications [J].
Geise, G. M. ;
Freeman, B. D. ;
Paul, D. R. .
POLYMER, 2010, 51 (24) :5815-5822
[10]  
HANAICHI T, 1986, J ELECTRON MICROSC, V35, P304