WEIGHTED ERDOS-KAC TYPE THEOREM OVER QUADRATIC FIELD IN SHORT INTERVALS

被引:0
作者
Liu, Xiaoli [1 ]
Yang, Zhishan [1 ]
机构
[1] Qingdao Univ, 308 Ningxia Rd, Qingdao 266071, Shandong, Peoples R China
关键词
ideal counting function; Erdos-Kac theorem; quadratic field; short intervals; mean value; INTEGRAL IDEALS; NUMBER;
D O I
10.21136/CMJ.2022.0203-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a quadratic field over the rational field and a(K) (n) be the number of nonzero integral ideals with norm n. We establish Erdos-Kac type theorems weighted by a(K) (n)(l) and a(K) (n(2))(l) of quadratic field in short intervals with l is an element of Z(+). We also get asymptotic formulae for the average behavior of a(K) (n)(l) and a(K) (n(2))(l) in short intervals.
引用
收藏
页码:957 / 976
页数:20
相关论文
共 12 条
[1]  
Bump D., 1997, Cambridge Studies in Advanced Mathematics, V55, DOI DOI 10.1017/CBO9780511609572
[2]   ON THE NUMBER OF INTEGRAL IDEALS IN GALOIS EXTENSIONS [J].
CHANDRASEKHARAN, K ;
GOOD, A .
MONATSHEFTE FUR MATHEMATIK, 1983, 95 (02) :99-109
[3]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[4]   On the Gaussian law of errors in the theory of additive functions [J].
Erdos, P ;
Kac, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1939, 25 :206-207
[5]  
HUXLEY MN, 1972, INVENT MATH, V15, P164
[6]  
Landau E., 1927, EINFUHRUNG ELEMENTAR
[7]   WEIGHTED ERDOS-KAC TYPE THEOREMS OVER GAUSSIAN FIELD IN SHORT INTERVALS [J].
Liu, X-L ;
Yang, Z-S .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) :465-482
[8]   The average behavior of the coefficients of Dedekind zeta function over square numbers [J].
Lue, Guangshi ;
Yang, Zhishan .
JOURNAL OF NUMBER THEORY, 2011, 131 (10) :1924-1938
[9]   Note on the number of integral ideals in Galois extensions [J].
Lue GuangShi ;
Wang YongHui .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2417-2424
[10]  
NOWAK WG, 1993, MATH NACHR, V161, P59