Effect of Magnetic Impurities on Superconductivity in LaH10

被引:44
作者
Semenok, Dmitrii, V [1 ]
Troyan, Ivan A. [2 ]
Sadakov, Andrey, V [3 ]
Zhou, Di [1 ]
Galasso, Michele [1 ]
Kvashnin, Alexander G. [1 ]
Ivanova, Anna G. [2 ]
Kruglov, Ivan A. [4 ,5 ]
Bykov, Alexey A. [6 ]
Terent'ev, Konstantin Y. [7 ]
Cherepakhin, Alexander, V [7 ]
Sobolevskiy, Oleg A. [3 ]
Pervakov, Kirill S. [3 ]
Seregin, Alexey Yu [2 ,8 ]
Helm, Toni [9 ]
Forster, Tobias [9 ]
Grockowiak, Audrey D. [10 ,11 ]
Tozer, Stanley W. [10 ]
Nakamoto, Yuki [12 ]
Shimizu, Katsuya [12 ]
Pudalov, Vladimir M. [3 ,13 ]
Lyubutin, Igor S. [2 ]
Oganov, Artem R. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Mat Discovery Lab, Bolshoy Blvd 30-1, Moscow 121205, Russia
[2] Russian Acad Sci, Fed Sci Res Ctr Crystallog & Photon, Shubnikov Inst Crystallog, 59 Leninsky Prospekt, Moscow 119333, Russia
[3] Russian Acad Sci, VL Ginzburg Ctr High Temp Superconduct & Quantum, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Dukhov Res Inst Automat VNIIA, Ctr Fundamental & Appl Res, St Sushchevskaya 22, Moscow 127055, Russia
[5] Moscow Inst Phys & Technol, Lab Computat Mat Discovery, 9 Inst Sky Lane, Dolgoprudnyi 141700, Russia
[6] NRC Kurchatov Inst PNPI, Crystal Phys Lab, 1 Mkr Orlova Roshcha, Gatchina 188300, Russia
[7] Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Akademgorodok 50,Bld 38, Krasnoyarsk 660036, Russia
[8] Natl Res Ctr, Synchrotron Radiat Source KISI Kurchatov, Kurchatov Inst, Moscow 123182, Russia
[9] Helmholtz Zentrum Dresden Rossendorf HZDR, Hochfeld Magnetlab Dresden HLD EMFL, D-01328 Dresden, Germany
[10] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[11] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS Sirius, BR-13083100 Campinas, SP, Brazil
[12] Osaka Univ, Grad Sch Engn Sci, KYOKUGEN, Machikaneyamacho 1-3, Toyonaka, Osaka 5608531, Japan
[13] Natl Res Univ Higher Sch Econ, HSE Tikhonov Moscow Inst Elect & Math, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
Anderson's theorem; high pressure; hydrides; superconductivity; TEMPERATURE; HYDROGEN; TRANSITION; DYNAMICS; HYDRIDE; FIELDS;
D O I
10.1002/adma.202204038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10, encounters a serious complication because of the large upper critical magnetic field H-C2(0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10: each at% of Nd causes a decrease in T-C by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H-10 demonstrates completely linear H-C2(T) proportional to |T - T-C|, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of T-C with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.
引用
收藏
页数:11
相关论文
共 105 条
  • [51] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [52] From ultrasoft pseudopotentials to the projector augmented-wave method
    Kresse, G
    Joubert, D
    [J]. PHYSICAL REVIEW B, 1999, 59 (03): : 1758 - 1775
  • [53] High-Tc superconductivity due to coexisting wide and narrow bands:: A fluctuation exchange study of the Hubbard ladder as a test case -: art. no. 212509
    Kuroki, K
    Higashida, T
    Arita, R
    [J]. PHYSICAL REVIEW B, 2005, 72 (21)
  • [54] Lattice dynamics simulation using machine learning interatomic potentials
    Ladygin, V. V.
    Korotaev, P. Yu
    Yanilkin, A., V
    Shapeev, A., V
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
  • [55] Lamichhane A., 2021, ARXIV
  • [56] Whole powder pattern decomposition methods and applications: A retrospection
    Le Bail, A
    [J]. POWDER DIFFRACTION, 2005, 20 (04) : 316 - 326
  • [57] SUPERCONDUCTIVITY IN SINGLET LA-PR AND IN NONMAGNETIC LA-RARE EARTH ALLOYS
    LEGVOLD, S
    GREEN, RW
    BEAUDRY, BJ
    OSTENSON, JE
    [J]. SOLID STATE COMMUNICATIONS, 1976, 18 (06) : 725 - 727
  • [58] LIFSHITZ IM, 1959, SOV PHYS JETP-USSR, V8, P875
  • [59] Microscopic mechanism of room-temperature superconductivity in compressed LaH10
    Liu, Liangliang
    Wang, Chongze
    Yi, Seho
    Kim, Kun Woo
    Kim, Jaeyong
    Cho, Jun-Hyung
    [J]. PHYSICAL REVIEW B, 2019, 99 (14)
  • [60] In-silico synthesis of lowest-pressure high-Tc ternary superhydrides
    Lucrezi, Roman
    Di Cataldo, Simone
    von der Linden, Wolfgang
    Boeri, Lilia
    Heil, Christoph
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)