Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams

被引:14
作者
Zhang, Nan [1 ,2 ]
Zheng, Shijie [1 ]
Chen, Dejin [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[2] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao 266520, Peoples R China
[3] Liaoning Hongyanhe Nucl Power Co Ltd, Dalian 116001, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexomagnetic effect; Curved nanobeam; Static bending; Free vibration; Buckling; RESPONSES; BEAM;
D O I
10.1007/s11012-022-01506-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on Hamilton's variational principle, strain gradient theory and Timoshenko curved nanobeam model, governing equations and corresponding boundary conditions are derived. Governing differential equations are transformed into algebraic equations by employing Navier method, thus an analytical solution for size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeam is established. Influences of opening angle, aspect ratio and scale parameter on bending deformation, free vibration and stability are discussed in detail. Compared and validated with available investigations, a good agreement is found.
引用
收藏
页码:1505 / 1518
页数:14
相关论文
共 39 条
  • [21] On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution
    Malikan, Mohammad
    Eremeyev, Victor A.
    [J]. NANOMATERIALS, 2020, 10 (09) : 1 - 22
  • [22] On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube
    Malikan, Mohammad
    Eremeyev, Victor A.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [23] Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams
    Nan, Zhang
    Xie, Zhao
    Zheng, Shijie
    Dejin, Chen
    [J]. SMART MATERIALS AND STRUCTURES, 2020, 29 (04)
  • [24] Flexomagnetoelectric interaction in multiferroics
    Pyatakov, A. P.
    Zvezdin, A. K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 71 (03) : 419 - 427
  • [25] On the possibility of piezoelectric nanocomposites without using piezoelectric materials
    Sharma, N. D.
    Maranganti, R.
    Sharma, P.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (11) : 2328 - 2350
  • [26] A theory of flexoelectricity with surface effect for elastic dielectrics
    Shen, Shengping
    Hu, Shuling
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (05) : 665 - 677
  • [27] Enhanced magnetoelectric response in nanostructures due to flexoelectric and flexomagnetic effects
    Shi, Yang
    Li, Ni
    Ye, Junjie
    Ma, Juan
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 521
  • [28] Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects
    Shijie, Zheng
    Xie, Zhao
    Wang, Hongtao
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (15) : 1261 - 1270
  • [29] Flexomagnetic response of nanostructures
    Sidhardh, Sai
    Ray, M. C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 124 (24)
  • [30] A cantilever beam analysis with flexomagnetic effect
    Sladek, Jan
    Sladek, Vladimir
    Xu, Mengkang
    Deng, Qian
    [J]. MECCANICA, 2021, 56 (09) : 2281 - 2292