Quantum potentials with q-Gaussian ground states

被引:13
作者
Vignat, Christophe [1 ,2 ]
Plastino, Angel [3 ]
Plastino, Angel R. [3 ,4 ,5 ]
Dehesa, Jesus Sanchez [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, LTHI, CH-1015 Lausanne, Switzerland
[2] LSS Supelec, Orsay, France
[3] Natl Univ La Plata, UNLP CREG CONICET, RA-1900 La Plata, Buenos Aires, Argentina
[4] Univ Granada, Inst Fis Teor & Computac Carlos I, Granada, Spain
[5] Univ Granada, Dept Fis Atom Mol & Nucl, Granada, Spain
关键词
Coulomb potential; q-Gaussian; Spherically symmetrical quantum potentials; ENTROPY; INFORMATION; MECHANICS; ATOMS;
D O I
10.1016/j.physa.2011.09.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine families of spherically symmetrical D-dimensional quantum potential functions V(r) having ground-state wavefunctions that exhibit, either in configuration space or in momentum space, the form of an isotropic q-Gaussian. These wavefunctions admit a maximum-entropy description in terms of S-q power-law entropies. We show that the potentials with a ground state of the q-Gaussian form in momentum space admit the Coulomb potential -1/r as a particular instance. Furthermore, all these potentials behave asymptotically as the Coulomb potential for large r for all values of the parameter q such that 0 < q < 1. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1068 / 1073
页数:6
相关论文
共 50 条
[31]   Similarity among quantum-mechanical states: analysis and applications for central potentials [J].
Lopez-Garcia, I ;
Angulo, J. C. ;
Lopez-Rosa, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
[32]   Gaussian Maximizers for Quantum Gaussian Observables and Ensembles [J].
Holevo, Alexander S. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) :5634-5641
[33]   Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels [J].
De Palma, Giacomo ;
Trevisan, Dario ;
Giovannetti, Vittorio .
PHYSICAL REVIEW LETTERS, 2017, 118 (16)
[34]   Quantum Benchmarks for Pure Single-Mode Gaussian States [J].
Chiribella, Giulio ;
Adesso, Gerardo .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[35]   Average mutual information for random fermionic Gaussian quantum states [J].
Hackl, Lucas ;
Kieburg, Mario ;
Maldonado, Joel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (18)
[36]   Gaussian Error Correction of Quantum States in a Correlated Noisy Channel [J].
Lassen, Mikael ;
Berni, Adriano ;
Madsen, Lars S. ;
Filip, Radim ;
Andersen, Ulrik L. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[37]   Bell operator and Gaussian squeezed states in noncommutative quantum mechanics [J].
Bastos, Catarina ;
Bernardini, Alex E. ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
PHYSICAL REVIEW D, 2016, 93 (10)
[38]   Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states [J].
Bonet-Luz, Esther ;
Tronci, Cesare .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189)
[39]   Quantum correlations of tripartite entangled states under Gaussian noise [J].
Rahman, Atta Ur ;
Noman, Muhammad ;
Javed, Muhammad ;
Luo, Ming-Xing ;
Ullah, Arif .
QUANTUM INFORMATION PROCESSING, 2021, 20 (09)
[40]   Quantum Sensing and Communication via Non-Gaussian States [J].
Giani, Andrea ;
Win, Moe Z. ;
Conti, Andrea .
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2025, 6 :18-33