Quantum potentials with q-Gaussian ground states

被引:13
作者
Vignat, Christophe [1 ,2 ]
Plastino, Angel [3 ]
Plastino, Angel R. [3 ,4 ,5 ]
Dehesa, Jesus Sanchez [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, LTHI, CH-1015 Lausanne, Switzerland
[2] LSS Supelec, Orsay, France
[3] Natl Univ La Plata, UNLP CREG CONICET, RA-1900 La Plata, Buenos Aires, Argentina
[4] Univ Granada, Inst Fis Teor & Computac Carlos I, Granada, Spain
[5] Univ Granada, Dept Fis Atom Mol & Nucl, Granada, Spain
关键词
Coulomb potential; q-Gaussian; Spherically symmetrical quantum potentials; ENTROPY; INFORMATION; MECHANICS; ATOMS;
D O I
10.1016/j.physa.2011.09.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine families of spherically symmetrical D-dimensional quantum potential functions V(r) having ground-state wavefunctions that exhibit, either in configuration space or in momentum space, the form of an isotropic q-Gaussian. These wavefunctions admit a maximum-entropy description in terms of S-q power-law entropies. We show that the potentials with a ground state of the q-Gaussian form in momentum space admit the Coulomb potential -1/r as a particular instance. Furthermore, all these potentials behave asymptotically as the Coulomb potential for large r for all values of the parameter q such that 0 < q < 1. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1068 / 1073
页数:6
相关论文
共 50 条
  • [21] Renyi relative entropies of quantum Gaussian states
    Seshadreesan, Kaushik P.
    Lami, Ludovico
    Wilde, Mark M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [22] Asymmetric quantum hypothesis testing with Gaussian states
    Spedalieri, Gaetana
    Braunstein, Samuel L.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [23] Geometry of perturbed Gaussian states and quantum estimation
    Genoni, Marco G.
    Giorda, Paolo
    Paris, Matteo G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [24] Gaussian quantum adaptation of non-Gaussian states for a lossy channel
    Filip, Radim
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [25] Robust Phase Estimation of Gaussian States in the Presence of Outlier Quantum States
    Mototake, Yukito
    Suzuki, Jun
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [26] Quantum Gaussian filter for exploring ground-state properties
    He, Min-Quan
    Zhang, Dan-Bo
    Wang, Z. D.
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [27] Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States
    Zhang, Jing
    Adesso, Gerardo
    Xie, Changde
    Peng, Kunchi
    PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [28] Thermodynamic length and work optimization for Gaussian quantum states
    Mehboudi, Mohammad
    Miller, Harry J. D.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [29] Similarity among quantum-mechanical states: analysis and applications for central potentials
    Lopez-Garcia, I
    Angulo, J. C.
    Lopez-Rosa, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [30] Gaussian Maximizers for Quantum Gaussian Observables and Ensembles
    Holevo, Alexander S.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5634 - 5641