ADAM12 has recently emerged as a Candidate Cancer Gene in a comprehensive genetic analysis of human breast cancers. Three somatic mutations in ADAM12 were observed at significant frequencies in breast cancers: D301H, G479E and L792F. The first 2 of these mutations involve highly conserved residues in ADAM12, and our computational sequence analysis confirms that they may be cancer-related. We show that the corresponding mutations in mouse ADAM12 inhibit the proteolytic processing and activation of ADAM12 in NIH3T3, COS-7, CHO-K1 cells and in MCF-7 breast cancer cells. The D/H and G/E ADAM12 mutants exert a dominant-negative effect on the processing of the wild-type ADAM12. Immunolluoreseence analysis and cell surface biotinylation experiments demonstrate that the D/H and G/E mutants are retained inside the cell and are not transported to the cell surface. Consequently, the D/H and G/E mutants, unlike the wild-type ADAM12, are not capable of shedding Delta-like 1, a ligand for Notch receptor, at the cell surface, or of stimulating cell migration. Our results suggest that the breast cancer-associated mutations interfere with the intracellular trafficking of ADAM12 and result in loss of the functional ADAM12 at the cell surface. (c) 2008 Wiley-Liss, Inc.