Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission

被引:33
作者
Candiani, Gabriele [1 ]
Tagliabue, Giulia [2 ]
Panigada, Cinzia [2 ]
Verrelst, Jochem [3 ]
Picchi, Valentina [4 ]
Rivera Caicedo, Juan Pablo [5 ]
Boschetti, Mirco [1 ]
机构
[1] CNR, Inst Electromagnet Sensing Environm, I-20133 Milan, Italy
[2] Univ Milano Bicocca, Remote Sensing Environm Dynam Lab, I-20126 Milan, Italy
[3] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[4] Council Agr Res & Econ, Res Ctr Engn & Agrofood Proc, I-20133 Milan, Italy
[5] CONACYT UAN, Secretary Res & Postgrad, Tepic 63000, Nayarit, Mexico
基金
欧洲研究理事会;
关键词
spaceborne imaging spectroscopy; radiative transfer modeling; machine learning regression algorithm; Gaussian process regression; active learning; chlorophyll content; nitrogen content; RADIATIVE-TRANSFER MODELS; GAUSSIAN-PROCESSES; CANOPY REFLECTANCE; RETRIEVAL; LEAF; INVERSION; LAI; FLUORESCENCE; PARAMETERS; REGRESSION;
D O I
10.3390/rs14081792
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This mission will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the "agriculture and food security" domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the retrieval of crop traits, such as chlorophyll and nitrogen content at both leaf (LCC and LNC) and canopy level (CCC and CNC). The results showed that HYB was able to provide reliable estimations at canopy level (R-2 = 0.79, RMSE = 0.38 g m(-2) for CCC and R-2 = 0.84, RMSE = 1.10 g m(-2) for CNC) but failed at leaf level. The HAL approach improved retrieval accuracy at canopy level (best metric: R-2 = 0.88 and RMSE = 0.21 g m(-2) for CCC; R-2 = 0.93 and RMSE = 0.71 g m(-2) for CNC), providing good results also at leaf level (best metrics: R-2 = 0.72 and RMSE = 3.31 mu g cm(-2) for LCC; R-2 = 0.56 and RMSE = 0.02 mg cm-2 for LNC). The promising results obtained through the hybrid approach support the feasibility of an operational retrieval of chlorophyll and nitrogen content, e.g., in the framework of the future CHIME mission. However, further efforts are required to investigate the approach across different years, sites and crop types in order to improve its transferability to other contexts.
引用
收藏
页数:22
相关论文
共 79 条
[41]  
Ranghetti M, 2021, AIT Series Trends Ea, V2, P129
[42]   Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant [J].
Rascher, U. ;
Alonso, L. ;
Burkart, A. ;
Cilia, C. ;
Cogliati, S. ;
Colombo, R. ;
Damm, A. ;
Drusch, M. ;
Guanter, L. ;
Hanus, J. ;
Hyvarinen, T. ;
Julitta, T. ;
Jussila, J. ;
Kataja, K. ;
Kokkalis, P. ;
Kraft, S. ;
Kraska, T. ;
Matveeva, M. ;
Moreno, J. ;
Muller, O. ;
Panigada, C. ;
Pikl, M. ;
Pinto, F. ;
Prey, L. ;
Pude, R. ;
Rossini, M. ;
Schickling, A. ;
Schurr, U. ;
Schuttemeyer, D. ;
Verrelst, J. ;
Zemek, F. .
GLOBAL CHANGE BIOLOGY, 2015, 21 (12) :4673-4684
[43]   Gaussian processes in machine learning [J].
Rasmussen, CE .
ADVANCED LECTURES ON MACHINE LEARNING, 2004, 3176 :63-71
[44]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[45]  
Rast M., COPERNICUS HYPERSPEC
[46]   Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters [J].
Rivera Caicedo, Juan Pablo ;
Verrelst, Jochem ;
Munoz-Mari, Jordi ;
Moreno, Jose ;
Camps-Valls, Gustavo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) :1249-1259
[47]   Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis [J].
Rossini, M. ;
Nedbal, L. ;
Guanter, L. ;
Ac, A. ;
Alonso, L. ;
Burkart, A. ;
Cogliati, S. ;
Colombo, R. ;
Damm, A. ;
Drusch, M. ;
Hanus, J. ;
Janoutova, R. ;
Julitta, T. ;
Kokkalis, P. ;
Moreno, J. ;
Novotny, J. ;
Panigada, C. ;
Pinto, F. ;
Schickling, A. ;
Schuettemeyer, D. ;
Zemek, F. ;
Rascher, U. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (06) :1632-1639
[48]   Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model [J].
Si, Yali ;
Schlerf, Martin ;
Zurita-Milla, Raul ;
Skidmore, Andrew ;
Wang, Tiejun .
REMOTE SENSING OF ENVIRONMENT, 2012, 121 :415-425
[49]   The High-Performance Airborne Imaging Spectrometer HyPlant-From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain [J].
Siegmann, Bastian ;
Alonso, Luis ;
Celesti, Marco ;
Cogliati, Sergio ;
Colombo, Roberto ;
Damm, Alexander ;
Douglas, Sarah ;
Guanter, Luis ;
Hanus, Jan ;
Kataja, Kari ;
Kraska, Thorsten ;
Matveeva, Maria ;
Moreno, Jose ;
Muller, Onno ;
Pikl, Miroslav ;
Pinto, Francisco ;
Vargas, Juan Quiros ;
Rademske, Patrick ;
Rodriguez-Morene, Fernando ;
Sabater, Neus ;
Schickling, Anke ;
Schuettemeyer, Dirk ;
Zemek, Frantisek ;
Rascher, Uwe .
REMOTE SENSING, 2019, 11 (23)
[50]   Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery [J].
Tagliabue, Giulia ;
Boschetti, Mirco ;
Bramati, Gabriele ;
Candiani, Gabriele ;
Colombo, Roberto ;
Nutini, Francesco ;
Pompilio, Loredana ;
Pablo Rivera-Caicedo, Juan ;
Rossi, Marta ;
Rossini, Micol ;
Verrelst, Jochem ;
Panigada, Cinzia .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 187 :362-377