Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process

被引:28
作者
Maslowski, Bohdan [1 ]
Pospisil, Jan [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ W Bohemia, Dept Math, Fac Sci Appl, Plzen 30614, Czech Republic
关键词
stochastic partial differential equations; fractional Brownian motion; fractional Ornstein-Uhlenbeck process; strictly stationary solution; ergodicity; parameter estimates;
D O I
10.1007/s00245-007-9028-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and ergodicity of a strictly stationary solution for linear stochastic evolution equations driven by cylindrical fractional Brownian motion are proved. Ergodic behavior of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied. Based on these results, strong consistency of suitably defined families of parameter estimators is shown. The general results are applied to linear parabolic and hyperbolic equations perturbed by a fractional noise.
引用
收藏
页码:401 / 429
页数:29
相关论文
共 27 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
[Anonymous], 2006, P NUM AN APPR THEOR, P353
[3]   The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise [J].
Caithamer, P .
STOCHASTICS AND DYNAMICS, 2005, 5 (01) :45-64
[4]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[5]  
Duncan T.E., 2002, STOCHASTICS DYNAMICS, V2, P225, DOI [DOI 10.1142/S0219493702000340, 10.1142/S0219493702000340]
[6]   Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise [J].
Duncan, TE ;
Maslowski, B ;
Pasik-Duncan, B .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (08) :1357-1383
[7]   Parameter estimation for controlled semilinear stochastic systems: Identifiability and consistency [J].
Goldys, B ;
Maslowski, B .
JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 80 (02) :322-343
[8]   A parabolic stochastic differential equation with fractional Brownian motion input [J].
Grecksch, W ;
Anh, VV .
STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) :337-346
[9]   Heat equations with fractional white noise potentials [J].
Hu, Y .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (03) :221-243
[10]  
Hu YZ, 2005, MEM AM MATH SOC, V175, pIII