Robust H∞ Control of Fractional-Order Switched Systems with Order 0 < α < 1 and Uncertainty

被引:8
作者
Li, Bingxin [1 ,2 ]
Zhao, Xiangfei [1 ,2 ]
Liu, Yaowei [1 ,2 ,3 ]
Zhao, Xin [1 ,2 ,3 ]
机构
[1] Nankai Univ, Inst Robot & Automat Informat Syst, Tianjin 300071, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin 300071, Peoples R China
[3] Nankai Univ, Inst Intelligence Technol & Robot Syst, Shenzhen Res Inst, Shenzhen 518083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
robust H-infinity control; fractional-order switched systems; fractional-order switching law; linear matrix inequalities (LMIs); state feedback controller; STABILITY ANALYSIS; TRACKING CONTROL; LINEAR-SYSTEMS; STABILIZATION; STABILIZABILITY; LYAPUNOV;
D O I
10.3390/fractalfract6030164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, robust H-infinity control for fractional-order switched systems (FOSSs) with uncertainty is studied. Firstly, the fractional-order switching law for FOSSs is proposed. Then, H-infinity control for FOSSs is proven based on the switching law and linear matrix inequalities (LMIs). Moreover, H-infinity control for FOSSs with a state feedback controller is extended. Furthermore, the LMI-based condition of robust H-infinity control for FOSSs with uncertainty is proven. Furthermore, the condition of robust H-infinity control is proposed to design the state feedback controller. Finally, four simulation examples verified the effectiveness of the proposed methods.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Necessary and sufficient stability condition of fractional-order interval linear systems [J].
Ahn, Hyo-Sung ;
Chen, YangQuan .
AUTOMATICA, 2008, 44 (11) :2985-2988
[2]   Conditions on the stability of a class of second-order switched systems [J].
Akar, M ;
Paul, A ;
Safonov, MG ;
Mitra, U .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) :338-340
[3]   Modeling and stabilization of a wireless network control system with packet loss and time delay [J].
Bai, Jianjun ;
Su, Hongye ;
Gao, Jinfeng ;
Sun, Tao ;
Wu, Zhengguang .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (07) :2420-2430
[4]   Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers [J].
Balochian, Saeed ;
Sedigh, Ali Khaki .
ISA TRANSACTIONS, 2012, 51 (01) :65-73
[5]   Real world applications of fractional models by Atangana-Baleanu fractional derivative [J].
Bas, Erdal ;
Ozarslan, Ramazan .
CHAOS SOLITONS & FRACTALS, 2018, 116 :121-125
[6]   Fuzzy Adaptive Decentralized Control for Nonstrict-Feedback Large-Scale Switched Fractional-Order Nonlinear Systems [J].
Bi, Wenshan ;
Wang, Tong ;
Yu, Xinghu .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) :8887-8896
[7]   Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties [J].
Chen, Liping ;
Wu, Ranchao ;
He, Yigang ;
Yin, Lisheng .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :274-284
[8]   Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach [J].
Daafouz, J ;
Riedinger, P ;
Iung, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (11) :1883-1887
[9]   Stability analysis of stochastic networked control systems [J].
Donkers, M. C. F. ;
Heemels, W. P. M. H. ;
Bernardini, D. ;
Bemporad, A. ;
Shneer, V. .
AUTOMATICA, 2012, 48 (05) :917-925
[10]   H∞ analysis and control of commensurate fractional order systems [J].
Farges, Christophe ;
Fadiga, Lamine ;
Sabatier, Jocelyn .
MECHATRONICS, 2013, 23 (07) :772-780