A NEW FRAMEWORK FOR AUTOMATED SEGMENTATION OF LEFT VENTRICLE WALL FROM CONTRAST ENHANCED CARDIAC MAGNETIC RESONANCE IMAGES

被引:0
作者
Elnakib, Ahmed [1 ]
Beache, Garth M. [2 ]
Gimel'farb, Georgy [3 ]
El-Baz, Ayman [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Sch Med, Dept Diagnost Radiol, Louisville, KY 40292 USA
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
来源
2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2011年
关键词
Left Ventricle; Segmentation; Contrast Enhanced Cardiac Magnetic Resonance Images; Markov-Gibbs Random Field;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1st-order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2nd-order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
ADALSTEINSSON D, 1995, J COMPUTATIONAL PHYS
[2]  
[Anonymous], P IEEE INT C IM PROC
[3]   Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution [J].
Bernard, Olivier ;
Friboulet, Denis ;
Thevenaz, Philippe ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (06) :1179-1191
[4]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[5]  
DICE LR, 1945, ECOLOGICAL SOC AM, V26
[6]   Precise segmentation of multimodal images [J].
Farag, AA ;
El-Baz, AS ;
Gimel'farb, G .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (04) :952-968
[7]   How we perform delayed enhancement imaging [J].
Kim, RJ ;
Shah, DJ ;
Judd, RM .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2003, 5 (03) :505-514
[8]   Myocardial viability in chronic ischemic heart disease -: Comparison of contrast-enhanced magnetic resonance imaging with 18F-fluorodeoxyglucose positron emission tomography [J].
Kühl, HP ;
Beek, AM ;
van der Weerdt, AP ;
Hofman, MBM ;
Visser, CA ;
Lammertsma, AA ;
Heussen, N ;
Visser, FC ;
van Rossum, AC .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2003, 41 (08) :1341-1348
[9]  
LI C, 2009, IEEE INT S BIOM IM N, P25
[10]  
Mahapatra D, 2010, LECT NOTES COMPUT SC, V6361, P493