The effect of 12C+12C rate uncertainties on the evolution and nucleosynthesis of massive stars

被引:48
作者
Bennett, M. E. [1 ]
Hirschi, R. [1 ,2 ]
Pignatari, M. [3 ]
Diehl, S. [4 ]
Fryer, C. [5 ]
Herwig, F. [6 ]
Hungerford, A. [5 ]
Nomoto, K. [7 ]
Rockefeller, G. [5 ]
Timmes, F. X. [8 ,9 ]
Wiescher, M. [8 ]
机构
[1] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England
[2] Univ Tokyo, IPMU, Kashiwa, Chiba 2778582, Japan
[3] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[4] LANL, Theoret Astrophys T 6, Los Alamos, NM 87545 USA
[5] LANL, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA
[6] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada
[7] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778583, Japan
[8] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA
[9] Univ Arizona, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
nuclear reactions; nucleosynthesis; abundances; stars: abundances; stars: evolution; S-PROCESS NUCLEOSYNTHESIS; NEUTRON-CAPTURE NUCLEOSYNTHESIS; ASTROPHYSICAL REACTION-RATES; STELLAR EVOLUTION; CORE HELIUM; WEAK COMPONENT; TRIPLE-ALPHA; ENERGY-LOSS; NUCLEAR; PHYSICS;
D O I
10.1111/j.1365-2966.2012.20193.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Over the last 40 years, the 12C +12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. Recent studies have indicated that the reaction rate may be higher than that currently used in stellar models. In order to investigate the effect of an enhanced carbon-burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C +12C reaction rates. Non-rotating stellar models considering five different initial masses, 15, 20, 25, 32 and 60 M-circle dot, at solar metallicity, were generated using the Geneva Stellar Evolution Code (genec) and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool (mppnp). A dynamic nuclear reaction network of similar to 1100 isotopes was used to track the s-process nucleosynthesis. An enhanced 12C +12C reaction rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon-burning lifetime. An increased carbon-burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core (rather than a radiative one). Carbon-shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon-core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon-core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon-core s-process. The yields were used to estimate the weak s-process component in order to compare with the Solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s-process. Consequently, it is shown that the production of isotopes in the KrSr region can be used to constrain the 12C +12C rate using the current branching ratio for a- and p-exit channels.
引用
收藏
页码:3047 / 3070
页数:24
相关论文
共 91 条
[1]   New γ-ray measurements for 12C+12C sub-Coulomb fusion:: Toward data unification [J].
Aguilera, E. F. ;
Rosales, P. ;
Martinez-Quiroz, E. ;
Murillo, G. ;
Fernandez, M. ;
Berdejo, H. ;
Lizcano, D. ;
Gomez-Camacho, A. ;
Policroniades, R. ;
Varela, A. ;
Moreno, E. ;
Chavez, E. ;
Ortiz, M. E. ;
Huerta, A. ;
Belyaeva, T. ;
Wiescher, M. .
PHYSICAL REVIEW C, 2006, 73 (06)
[2]   BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics [J].
Aikawa, M ;
Arnould, M ;
Goriely, S ;
Jorissen, A ;
Takahashi, K .
ASTRONOMY & ASTROPHYSICS, 2005, 441 (03) :1195-1203
[3]   A compilation of charged-particle induced thermonuclear reaction rates [J].
Angulo, C ;
Arnould, M ;
Rayet, M ;
Descouvemont, P ;
Baye, D ;
Leclercq-Willain, C ;
Coc, A ;
Barhoumi, S ;
Aguer, P ;
Rolfs, C ;
Kunz, R ;
Hammer, JW ;
Mayer, A ;
Paradellis, T ;
Kossionides, S ;
Chronidou, C ;
Spyrou, K ;
Degl'Innocenti, S ;
Fiorentini, G ;
Ricci, B ;
Zavatarelli, S ;
Providencia, C ;
Wolters, H ;
Soares, J ;
Grama, C ;
Rahighi, J ;
Shotter, A ;
Rachti, ML .
NUCLEAR PHYSICS A, 1999, 656 (01) :3-183
[4]  
ARCORAGI JP, 1991, ASTRON ASTROPHYS, V249, P134
[5]   TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE [J].
Arnett, W. David ;
Meakin, Casey .
ASTROPHYSICAL JOURNAL, 2011, 733 (02)
[6]   ADVANCED EVOLUTION OF MASSIVE STARS .2. CARBON BURNING [J].
ARNETT, WD .
ASTROPHYSICAL JOURNAL, 1972, 176 (03) :699-&
[7]   CARBON-BURNING NUCLEOSYNTHESIS AT CONSTANT TEMPERATURE [J].
ARNETT, WD ;
TRURAN, JW .
ASTROPHYSICAL JOURNAL, 1969, 157 (1P1) :339-&
[8]   HYDROSTATIC NUCLEOSYNTHESIS .1. CORE HELIUM AND CARBON BURNING [J].
ARNETT, WD ;
THIELEMANN, FK .
ASTROPHYSICAL JOURNAL, 1985, 295 (02) :589-603
[9]   Absolute cross sections measurement for the 12C+12C system at astrophysically relevant energies [J].
Barron-Palos, L. ;
Aguilera, E. F. ;
Aspiazu, J. ;
Huerta, A. ;
Martinez-Quiroz, E. ;
Monroy, R. ;
Moreno, E. ;
Murillo, G. ;
Ortiz, M. E. ;
Policroniades, R. ;
Varela, A. ;
Chavez, E. .
NUCLEAR PHYSICS A, 2006, 779 :318-332
[10]   The effect of 12C+12C rate uncertainties on s-process yields [J].
Bennett, M. E. ;
Hirschi, R. ;
Pignatari, M. ;
Diehl, S. ;
Fryer, C. ;
Herwig, F. ;
Hungerford, A. ;
Magkotsios, G. ;
Rockefeller, G. ;
Timmes, F. ;
Wiescher, M. ;
Young, P. .
NUCLEAR PHYSICS IN ASTROPHYSICS IV (NPAIV 2009), 2010, 202