Bifurcation analysis of nonlinear reaction-diffusion problems using wavelet-based reduction techniques

被引:7
|
作者
Krishnan, J [1 ]
Runborg, O
Kevrekidis, IG
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
wavelets; numerical homogenization; bifurcation analysis; reaction-diffusion equations;
D O I
10.1016/j.compchemeng.2003.08.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using a computational method for numerical homogenization, we perform the coarse-scale bifurcation analysis of nonlinear reaction-diffusion problems in both uniform and spatially varying media. The method is based on wavelet decomposition and projection of the differential equation on coarse scale wavelet spaces. The approach is capable of capturing turning points and pitchfork bifurcations of sharp, front-like solutions at the coarse level. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:557 / 574
页数:18
相关论文
共 29 条