Bifurcation analysis of nonlinear reaction-diffusion problems using wavelet-based reduction techniques

被引:7
|
作者
Krishnan, J [1 ]
Runborg, O
Kevrekidis, IG
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
wavelets; numerical homogenization; bifurcation analysis; reaction-diffusion equations;
D O I
10.1016/j.compchemeng.2003.08.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using a computational method for numerical homogenization, we perform the coarse-scale bifurcation analysis of nonlinear reaction-diffusion problems in both uniform and spatially varying media. The method is based on wavelet decomposition and projection of the differential equation on coarse scale wavelet spaces. The approach is capable of capturing turning points and pitchfork bifurcations of sharp, front-like solutions at the coarse level. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:557 / 574
页数:18
相关论文
共 29 条
  • [1] Wavelet-Based Spatial Scaling of Coupled Reaction-Diffusion Fields
    Mishra, Sudib K.
    Muralidharan, Krishna
    Deymier, Pierre A.
    Frantziskonis, George
    Pannala, Sreekanth
    Simunovic, Srdjan
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2008, 6 (04) : 281 - 297
  • [2] An efficient wavelet-based optimization algorithm for the solutions of reaction-diffusion equations in biomedicine
    Mahalakshmi, M.
    Hariharan, G.
    Brindha, G. R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 186
  • [3] Traffic characterization using wavelet-based techniques
    Boulliant, D
    Pruthi, P
    Popescu, A
    PERFORMANCE AND CONTROL OF NETWORK SYSTEMS II, 1998, 3530 : 382 - 391
  • [4] ANALYSIS OF SPLITTING METHODS FOR REACTION-DIFFUSION PROBLEMS USING STOCHASTIC CALCULUS
    Faou, Erwan
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1467 - 1483
  • [5] Review of wavelet methods for the solution of reaction-diffusion problems in science and. engineering
    Hariharan, G.
    Kannan, K.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (03) : 799 - 813
  • [6] Boundary layer analysis for the stochastic nonlinear reaction-diffusion equations
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 247 - 258
  • [7] Non-Linear Bifurcation Analysis of Reaction-Diffusion Activator-Inhibator System
    Sandip Banerjee
    C.G. Chakrabarti
    Journal of Biological Physics, 1999, 25 : 23 - 33
  • [8] Numerical approximation of reaction-diffusion problems in electrocardiology using probabilistic methods
    Salsi, A
    Groppi, M
    Di Cola, G
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 31 (4-5) : 181 - 188
  • [9] Non-linear bifurcation analysis of reaction-diffusion activator-inhibator system
    Banerjee, S
    Chakrabarti, CG
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (01) : 23 - 33
  • [10] Wavelet-based density estimation for noise reduction in plasma simulations using particles
    van Yen, Romain Nguyen
    del-Castillo-Negrete, Diego
    Schneider, Kai
    Farge, Marie
    Chen, Guangye
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (08) : 2821 - 2839