A NEW BERNOULLI SUB-ODE METHOD FOR CONSTRUCTING TRAVELING WAVE SOLUTIONS FOR TWO NONLINEAR EQUATIONS WITH ANY ORDER

被引:0
作者
Zheng, Bin [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2011年 / 73卷 / 03期
关键词
sub-ODE method; traveling wave solution; BBM equation with any order; general Gardner equation; nonlinear equation; EXTENDED TANH-FUNCTION; KDV-MKDV EQUATION; SOLITON-SOLUTIONS; EXPANSION METHOD; F-EXPANSION; EXPLICIT; TERMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new generalized Bernoulli sub-ODE method is proposed to construct exact solutions of nonlinear equations. The validity of the method is testified by finding new exact traveling wave solutions of the BBM equation with any order and general Gardner equation.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 33 条
[1]   The extended tanh method and its applications for solving nonlinear physical models [J].
Abdou, M. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :988-996
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   Combined structures of single valued and multiple valued localized excitations in higher-dimensional soliton system [J].
Bai, Cheng-Lin ;
Bai, Cheng-Jie ;
Zhao, Hong .
PHYSICS LETTERS A, 2006, 357 (01) :22-30
[4]  
Chen Y., 2005, COMMUN NONLINEAR SCI, V10, P133, DOI DOI 10.1016/S1007-5704(03)00121-7
[5]   A CLASS OF EXACT, PERIODIC-SOLUTIONS OF NONLINEAR ENVELOPE EQUATIONS [J].
CHOW, KW .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4125-4137
[6]   Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation [J].
Estevez, P. G. ;
Kuru, S. ;
Negro, J. ;
Nieto, L. M. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :2031-2040
[7]   Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (32) :6853-6872
[8]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[9]   Exploratory approach to explicit solution of nonlinear evolution equations [J].
Feng, X .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (01) :207-222
[10]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708