Symmetry-protected adiabatic quantum transistors

被引:10
作者
Williamson, Dominic J. [1 ,2 ]
Bartlett, Stephen D. [1 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
quantum computing; entanglement; topological order; DECOHERENCE-FREE SUBSPACES; COMPUTATION;
D O I
10.1088/1367-2630/17/5/053019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize theAQTand to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.
引用
收藏
页数:24
相关论文
共 53 条
[31]  
Kaltenbaek R, 2010, NAT PHYS, V6, P850, DOI [10.1038/nphys1777, 10.1038/NPHYS1777]
[32]   Prediction of a gapless topological Haldane liquid phase in a one-dimensional cold polar molecular lattice [J].
Kestner, J. P. ;
Wang, Bin ;
Sau, Jay D. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2011, 83 (17)
[33]  
Kitaev A. Y., 2001, Phys. Usp., V44, P131, DOI DOI 10.1070/1063-7869/44/10S/S29
[34]   Quantum computations: algorithms and error correction [J].
Kitaev, AY .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1191-1249
[35]  
Landau Z., 2013, ARXIV13075143
[36]   Decoherence-free subspaces for quantum computation [J].
Lidar, DA ;
Chuang, IL ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2594-2597
[37]  
Lidar DA, 2014, ADV CHEM PHYS, V154, P295
[38]   Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation [J].
Miller, Jacob ;
Miyake, Akimasa .
PHYSICAL REVIEW LETTERS, 2015, 114 (12)
[39]   Quantum Computation on the Edge of a Symmetry-Protected Topological Order [J].
Miyake, Akimasa .
PHYSICAL REVIEW LETTERS, 2010, 105 (04)
[40]   The birth of topological insulators [J].
Moore, Joel E. .
NATURE, 2010, 464 (7286) :194-198