LUMP SOLUTIONS TO THE GENERALIZED (2+1)-DIMENSIONAL B-TYPE KADOMTSEV-PETVIASHVILI EQUATION

被引:0
作者
Cai, Benzhi [1 ]
Wang, Zhenli [2 ]
Zhang, Lihua [3 ,4 ]
Liu, Hanze [5 ]
机构
[1] Ningbo Univ, Coll Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Dezhou Univ, Sch Math Sci, Dezhou 253000, Shandong, Peoples R China
[4] Hebei Univ Econ & Business, Coll Math & Stat, Shijiazhuang 050061, Hebei, Peoples R China
[5] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2020年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
Lump solution; generalized bilinear form; B-type Kadomtsev-Petviashvili equation; symbolic computation; NONLOCAL SYMMETRIES; BACKLUND TRANSFORMATION; SOLITON-SOLUTIONS; WAVE SOLUTIONS; ROGUE WAVES;
D O I
10.11948/20190183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through symbolic computation with Maple, the (2+1)-dimensional B-type Kadomtsev-Petviashvili(BKP) equation is considered. The generalized bilinear form not the Hirota bilinear method is the starting point in the computation process in this paper. The resulting lump solutions contain six free parameters, four of which satisfy two determinant conditions to guarantee the analyticity and rational localization of the solutions, while the others are arbitrary. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.
引用
收藏
页码:1038 / 1046
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 1991, Nonlinear evolution equations and inverse scattering
[2]  
[Anonymous], COMMUNICATIONS THEOR
[3]   NEW HIERARCHY OF KORTEWEG-DEVRIES EQUATIONS [J].
CAUDREY, PJ ;
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 351 (1666) :407-422
[4]   KP HIERARCHIES OF ORTHOGONAL AND SYMPLECTIC TYPE - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .6. [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3813-3818
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]   On the combinatorics of the Hirota D-operators [J].
Gilson, C ;
Lambert, F ;
Nimmo, J ;
Willox, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1945) :223-234
[7]   Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation [J].
Guo, Ding ;
Tian, Shou-Fu ;
Zhang, Tian -Tian .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) :770-778
[9]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[10]   SOLUTION OF INVERSE SCATTERING PROBLEM FOR KADOMTSEV-PETVIASHVILI EQUATION BY METHOD OF SEPARATION OF VARIABLES [J].
JOHNSON, RS ;
THOMPSON, S .
PHYSICS LETTERS A, 1978, 66 (04) :279-281