Insights into the Micromechanical Properties of the Metaphase Spindle

被引:81
作者
Shimamoto, Yuta [1 ]
Maeda, Yusuke T. [2 ]
Ishiwata, Shin'ichi [3 ]
Libchaber, Albert J. [2 ]
Kapoor, Tarun M. [1 ]
机构
[1] Rockefeller Univ, Lab Chem & Cell Biol, New York, NY 10065 USA
[2] Rockefeller Univ, Lab Expt Condensed Matter Phys, New York, NY 10065 USA
[3] Waseda Univ, Fac Sci & Engn, Dept Phys, Shinjuku Ku, Tokyo 1698555, Japan
基金
美国国家卫生研究院;
关键词
MITOTIC SPINDLE; MICROTUBULE DYNAMICS; CELL-DIVISION; MECHANICAL-PROPERTIES; TUBULIN; KINESIN; LENGTH; MOTOR; ORGANIZATION; CHROMOSOMES;
D O I
10.1016/j.cell.2011.05.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.
引用
收藏
页码:1062 / 1074
页数:13
相关论文
共 50 条