Effect of the Pauli principle on photoelectron spin transport in p+ GaAs

被引:14
作者
Cadiz, F. [1 ]
Paget, D. [1 ]
Rowe, A. C. H. [1 ]
Amand, T. [2 ]
Barate, P. [2 ]
Arscott, S. [3 ]
机构
[1] Ecole Polytech, CNRS, Phys Mat Condensee, F-91128 Palaiseau, France
[2] Univ Toulouse, INSA CNRS UPS, F-31077 Toulouse, France
[3] Univ Lille, CNRS, IEMN, F-59652 Villeneuve Dascq, France
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 16期
关键词
SEMICONDUCTOR QUANTUM-WELLS; DOPED GAAS; GALLIUM-ARSENIDE; DIFFUSION LENGTH; ELECTRON-GAS; SCATTERING; PLASMA;
D O I
10.1103/PhysRevB.91.165203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In p(+) GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly focused light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about 2 mu m from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photoelectron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and band-gap renormalization are negligible due to electrostatic screening by the hole gas.
引用
收藏
页数:13
相关论文
共 47 条
[1]  
[Anonymous], 1879, ARCH SCI PHYS NAT
[2]   Full Electrical Control of the Electron Spin Relaxation in GaAs Quantum Wells [J].
Balocchi, A. ;
Duong, Q. H. ;
Renucci, P. ;
Liu, B. L. ;
Fontaine, C. ;
Amand, T. ;
Lagarde, D. ;
Marie, X. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[3]   SEMICONDUCTING AND OTHER MAJOR PROPERTIES OF GALLIUM-ARSENIDE [J].
BLAKEMORE, JS .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (10) :R123-R181
[4]  
Brechet S. D., ARXIV10112323V1
[5]   Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature [J].
Brown, Ethan W. ;
DuBois, Jonathan L. ;
Holzmann, Markus ;
Ceperley, David M. .
PHYSICAL REVIEW B, 2013, 88 (08)
[6]   Central role of electronic temperature for photoelectron charge and spin mobilities in p+-GaAs [J].
Cadiz, F. ;
Paget, D. ;
Rowe, A. C. H. ;
Peytavit, E. ;
Arscott, S. .
APPLIED PHYSICS LETTERS, 2015, 106 (09)
[7]   All optical method for investigation of spin and charge transport in semiconductors: Combination of spatially and time-resolved luminescence [J].
Cadiz, F. ;
Barate, P. ;
Paget, D. ;
Grebenkov, D. ;
Korb, J. P. ;
Rowe, A. C. H. ;
Amand, T. ;
Arscott, S. ;
Peytavit, E. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (02)
[8]   Effect of Pauli Blockade on Spin-Dependent Diffusion in a Degenerate Electron Gas [J].
Cadiz, F. ;
Paget, D. ;
Rowe, A. C. H. .
PHYSICAL REVIEW LETTERS, 2013, 111 (24)
[9]   Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation [J].
Cadiz, F. ;
Paget, D. ;
Rowe, A. C. H. ;
Berkovits, V. L. ;
Ulin, V. P. ;
Arscott, S. ;
Peytavit, E. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (10)
[10]   Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors [J].
Cameron, AR ;
Riblet, P ;
Miller, A .
PHYSICAL REVIEW LETTERS, 1996, 76 (25) :4793-4796