FROM L∞-ALGEBROIDS TO HIGHER SCHOUTEN/POISSON STRUCTURES

被引:19
作者
Bruce, Andrew James
机构
[1] Llanwern, Newport, NP18 2DY
关键词
L-infinity-algebras; L-infinity-algebroids; higher Poisson structures; higher Schouten structures; graded manifolds; QUANTIZATION; COHOMOLOGY; SYSTEMS;
D O I
10.1016/S0034-4877(11)00010-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that L-infinity-algebroids, understood in terms of Q-manifolds can be described in terms of certain higher Schouten and Poisson structures on graded (super)manifolds. This generalises known constructions for Lie (super)algebras and Lie algebroids.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 46 条
[1]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[2]   Non-Abelian antibrackets [J].
Alfaro, J ;
Damgaard, PH .
PHYSICS LETTERS B, 1996, 369 (3-4) :289-294
[3]   Gauge symmetry and supersymmetry of multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2008, 77 (06)
[4]   Modeling multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2007, 75 (04)
[5]   The M2-M5 brane system and a generalized Nahm's equation [J].
Basu, A ;
Harvey, JA .
NUCLEAR PHYSICS B, 2005, 713 (1-3) :136-150
[6]   Quantum antibrackets [J].
Batalin, I ;
Marnelius, R .
PHYSICS LETTERS B, 1998, 434 (3-4) :312-320
[7]   RELATIVISTIC S-MATRIX OF DYNAMICAL-SYSTEMS WITH BOSON AND FERMION CONSTRAINTS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1977, 69 (03) :309-312
[8]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[9]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[10]   General quantum antibrackets [J].
Batalin, IA ;
Marnelius, R .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 120 (03) :1115-1132