The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces

被引:36
作者
Chen, GL [1 ]
Xue, YF
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] E China Univ Sci & Technol, Inst Fundamental Educ, Shanghai 200237, Peoples R China
关键词
generalized inverses; type I perturbation of operators; orthogonal projections;
D O I
10.1016/S0024-3795(98)10066-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-1,H-2 be two Hilbert spaces over the complex field C and let T:H-1 --> H-2 be a bounded linear operator with the generalized inverse T+. Let (T) over bar = T + delta T be a bounded linear operator with //T+// //delta T// < 1. Suppose that dim ker (T) over bar = dim ker T < infinity or R((T) over bar) boolean AND R(T)(perpendicular to) = 0. Then (T) over bar has the generalized inverse [GRAPHICS] with //(T) over bar(+)// less than or equal to //T+///1 - //T+// //delta T//. This result gives an analogue of Theorem 3.9 of M.Z. Nashed ("Generalized Inverses and Applications", Academic Press, New York, 1976) in Hilbert spaces. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 6 条
  • [1] Blackadar B., 1986, K THEORY OPERATOR AL, V5, DOI 10.1007/978-1-4613-9572-0
  • [2] Perturbation analysis for the operator equation Tx=b in Banach spaces
    Chen, GL
    Xue, YF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) : 107 - 125
  • [3] Perturbation analysis of the least squares solution in Hilbert spaces
    Chen, GL
    Wei, MS
    Xue, YF
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 : 69 - 80
  • [4] Ding J, 1997, LINEAR ALGEBRA APPL, V262, P229
  • [5] Kato T., 1984, PERTURBATION THEORY
  • [6] NASHED MZ, 1976, PERTURBATIONS APPROX