Stable constant mean curvature hypersurfaces in some Riemannian manifolds

被引:16
作者
Montiel, S [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
constant mean curvature; hypersurface; stability;
D O I
10.1007/s000140050070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all stable constant mean curvature hypersurfaces in a wide class of complete Riemannian manifolds having a foliation whose leaves are umbilical hypersurfaces. Among the consequences of this analysis we obtain all the stable constant mean curvature hypersurfaces in many nonsimply connected hyperbolic space forms.
引用
收藏
页码:584 / 602
页数:19
相关论文
共 22 条
[1]  
Aleksandrov AD., 1956, VESTNIK LENINGRAD U, V11, P5
[2]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[3]  
BARBOSA L, 1988, MATH Z, V197, P123
[4]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[5]   INTEGRAL FORMULAS AND HYPERSPHERES IN A SIMPLY CONNECTED SPACE FORM [J].
BIVENS, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) :113-118
[6]   ISOPERIMETRIC-INEQUALITIES ON MINIMAL SUBMANIFOLDS OF SPACE-FORMS [J].
CHOE, JY ;
GULLIVER, R .
MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) :169-189
[7]   INCREASE IN THE 2ND EIGENVALUE OF A SCHRODINGER OPERATOR ON A COMPACT MANIFOLD AND APPLICATIONS [J].
ELSOUFI, A ;
ILIAS, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 103 (02) :294-316
[8]   EXTRINSIC UPPER-BOUNDS FOR GAMMA-1 [J].
HEINTZE, E .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :389-402
[9]  
Jellett J., 1853, J MATH PURE APPL, VXVIII, P163
[10]  
Kanai M., 1983, Tokyo J. Math., V6, P143