Hook Lengths and 3-Cores

被引:14
作者
Han, Guo-Niu [1 ,2 ]
Ono, Ken [3 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avanc, UMR 7501, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
hook length; t-core; partition; modular form;
D O I
10.1007/s00026-011-0096-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions, for the coefficients of certain power series. In the course of this investigation, he conjectured that a(n) = 0 if and only if b(n) = 0, where integers a(n) and b(n) are defined by Sigma(infinity)(n=0)a(n)x(n) : = Pi(infinity)(n=1)(1 - x(n))(8), Sigma(infinity)(n=0)b(n)x(n) : = Pi(infinity)(n=1)(1 - x(3n)3)/1 - x(n), The numbers a(n) are given in terms of hook lengths of partitions, while b(n) equals the number of 3-core partitions of n. Here we prove this conjecture.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 11 条
[11]  
Ribet K.A., 1977, MODULAR FUNCTIONS ON, VV, P17