Hook Lengths and 3-Cores

被引:14
作者
Han, Guo-Niu [1 ,2 ]
Ono, Ken [3 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avanc, UMR 7501, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
hook length; t-core; partition; modular form;
D O I
10.1007/s00026-011-0096-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions, for the coefficients of certain power series. In the course of this investigation, he conjectured that a(n) = 0 if and only if b(n) = 0, where integers a(n) and b(n) are defined by Sigma(infinity)(n=0)a(n)x(n) : = Pi(infinity)(n=1)(1 - x(n))(8), Sigma(infinity)(n=0)b(n)x(n) : = Pi(infinity)(n=1)(1 - x(3n)3)/1 - x(n), The numbers a(n) are given in terms of hook lengths of partitions, while b(n) equals the number of 3-core partitions of n. Here we prove this conjecture.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 2006, MODULAR FORMS
[2]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[3]  
Bump D., 1998, Automorphic Forms and Representations, V55
[4]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347
[5]   THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA: REFINEMENT, ELEMENTARY PROOF, EXTENSION AND APPLICATIONS [J].
Han, Guo-Niu .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) :1-29
[6]   Some Conjectures and Open Problems on Partition Hook Lengths [J].
Han, Guo-Niu .
EXPERIMENTAL MATHEMATICS, 2009, 18 (01) :97-106
[7]  
HECKE E, 1983, MATH WERKE
[8]  
Iwaniec H., 1997, GRADUATE STUDIES MAT
[9]  
Nekrasov NA, 2006, PROG MATH, V244, P525
[10]  
Ono K., 2004, WEB MODULARITY ARITH